In this paper, we prove a local uniqueness by the monotonicity based method for a potential $ q $ of the magnetic Schrödinger operator $ -D^2_A u +q u = 0 $ in a bounded domain $ \Omega $ from partial boundary data. Moreover, we give monotonicity tests to detect an unknown obstacle for the magnetic Schrödinger equation.
Citation: |
[1] | D. D. S. Ferreira, C. E. Kenig and J. Sjöstrand, et al., Determining a magnetic Schrödinger operator from partial cauchy data, Commum. Math. Phys., 271 (2007), 467-488. doi: 10.1007/s00220-006-0151-9. |
[2] | B. Gebauer, Localized potentials in electrical impedance tomography, Inverse Prob. Imag., 2 (2008), 251-269. doi: 10.3934/ipi.2008.2.251. |
[3] | B. Harrach and M. Ullrich, Monotonicity based shape reconstruction in electrical impedance tomography, SIAM J. Math. Anal., 45 (2013), 3382-3403. doi: 10.1137/120886984. |
[4] | B. Harrach and M. Ullrich, Local uniqueness for an inverse boundary value problem with partial data, Proc. Amer. Math. Soc., 145 (2017), 1087-1095. doi: 10.1090/proc/12991. |
[5] | B. Harrach, V. Pohjola and M. Salo, Monotonicity and local uniqueness for the Helmholtz equation, Anal. Partial Differ. Equ., 12 (2019), 1741-1771. doi: 10.2140/apde.2019.12.1741. |
[6] | B. Harrach, V. Pohjola and M. Salo, Dimension bounds in monotonicity methods for the Helmholtz equation, SIAM J. Math. Anal., 51 (2019), 2995-3019. doi: 10.1137/19M1240708. |
[7] | C. Kenig and M. Salo, Recent progress in the Calderón problem with partial data, Inverse ploblems and applications, Contemp. Math., 615, Amer. Math Soc., Providence, RI, (2014), 193-222. doi: 10.1090/conm/615/12245. |
[8] | A. Laestadius, M. Benedicks and M. Pens, Unique continuation for the magnetic Schrödinger equation, arXiv: 1710.01403. |
[9] | L. P. Machado, A. Ruiz and L. Tzou, Stability estimate for the magnetic Schrödinger operator with partial mesurements, J. Differ. Equ., 321 (2022), 475-521. doi: 10.1016/j.jde.2022.02.051. |
[10] | A. Nachman, Global uniqueness for a two-dimensional inverse boundary value problem, Ann. Math., 143 (1996), 71-96. doi: 10.2307/2118653. |
[11] | G. Nakamura, Z. Sun and G. Uhlmann, Global identifiability for an inverse problem for the Schrödinger equation in a magnetic field, Math. Ann., 303 (1995), 377-388. doi: 10.1007/BF01460996. |
[12] | M. Salo, Semiclassical pseudodifferential calculus and the reconstruction of a magnetic field, Commun. Partial Differ. Equ., 31 (2006), 1639-1666. doi: 10.1080/03605300500530420. |
[13] | Z. Sun, An inverse boundary value problem for Schrödinger operators with vector potentials, Amer. Math. Soc., 338 (1993), 953-969. doi: 10.2307/2154438. |
[14] | J. Sylvester and G. Uhlmann, A global uniqueness theorem for an inverse boundary value problem, Ann. Math., 125 (1987), 153-169. doi: 10.2307/1971291. |