\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Remarks on the complex Euler equations

  • *Corresponding author: Dallas Albritton

    *Corresponding author: Dallas Albritton 

To Vladimír Šverák, on the occasion of his 65th birthday, with gratitude and admiration

DA was supported by National Science Foundation Postdoctoral Fellowship Grant No. 2002023. WJO was supported by National Science Foundation Graduate Research Fellowship Grant No. DGE-2140004.

Abstract / Introduction Full Text(HTML) Related Papers Cited by
  • We consider a complexification of the Euler equations introduced by Šverák in [35] which conserves energy. We prove that these complex Euler equations are nonlinearly ill-posed below analytic regularity and, moreover, we exhibit solutions which lose analyticity in finite time. Our examples are complex shear flows and, hence, one-dimensional. This motivates us to consider fully nonlinear systems in one spatial dimension which are non-hyperbolic near a constant equilibrium. We prove nonlinear ill-posedness and finite-time singularity for these models. Our approach is to construct an infinite-dimensional unstable manifold to capture the high frequency instability at the nonlinear level.

    Mathematics Subject Classification: Primary: 35Q31, 35Q35; Secondary: 37L40, 37D10.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] D. M. AmbroseJ. L. Bona and T Milgrom, Global solutions and ill-posedness for the Kaup system and related Boussinesq systems, Indiana Univ. Math. J., 68 (2019), 1173-1198.  doi: 10.1512/iumj.2019.68.7721.
    [2] V. Arnold, Sur la géométrie différentielle des groupes de Lie de dimension infinie et ses applications à l'hydrodynamique des fluides parfaits, Ann. Inst. Fourier (Grenoble), 16 (1966), 319-361. 
    [3] H. Bahouri, J.-Y. Chemin and R. Danchin, Fourier Analysis and Nonlinear Partial Differential Equations, volume 343, Springer Science & Business Media, 2011. doi: 10.1007/978-3-642-16830-7.
    [4] L. CaffarelliR. Kohn and L. Nirenberg, Partial regularity of suitable weak solutions of the Navier-Stokes equations, Commun. Pure Appl. Math., 35 (1982), 771-831.  doi: 10.1002/cpa.3160350604.
    [5] R. E. Caflisch, Singularity formation for complex solutions of the 3d incompressible euler equations, Phys. D, 67 (1993), 1-18.  doi: 10.1016/0167-2789(93)90195-7.
    [6] R. E. Caflisch and O. F. Orellana, Long time existence for a slightly perturbed vortex sheet, Commun. Pure Appl. Math., 39 (1986), 807-838.  doi: 10.1002/cpa.3160390605.
    [7] R. E. Caflisch and O. F. Orellana, Singular solutions and ill-posedness for the evolution of vortex sheets, SIAM J. Math. Anal., 20 (1989), 293-307.  doi: 10.1137/0520020.
    [8] H. Y. Cheng and R. de la Llave, Stable manifolds to bounded solutions in possibly ill-posed pdes, J. Differ. Equ., 268 (2020), 4830-4899.  doi: 10.1016/j.jde.2019.10.042.
    [9] P. ConstantinP. D. Lax and A. Majda, A simple one-dimensional model for the three-dimensional vorticity equation, Commun. Pure Appl. Math., 38 (1985), 715-724.  doi: 10.1002/cpa.3160380605.
    [10] P. ConstantinA. J. Majda and E. G. Tabak, Singular front formation in a model for quasigeostrophic flow, Phys. Fluids, 6 (1994), 9-11.  doi: 10.1063/1.868050.
    [11] S. De Gregorio, On a one-dimensional model for the three-dimensional vorticity equation, J. Statist. Phys., 59 (1990), 1251-1263.  doi: 10.1007/BF01334750.
    [12] R. de la Llave, A smooth center manifold theorem which applies to some ill-posed partial differential equations with unbounded nonlinearities, J. Dynam. Differ. Equ., 21 (2009), 371-415.  doi: 10.1007/s10884-009-9140-y.
    [13] B. Desjardins and E. Grenier, On nonlinear Rayleigh–Taylor instabilities, Acta Math. Sinica, 22 (2006), 1007-1016.  doi: 10.1007/s10114-005-0559-8.
    [14] A. Douglis, Some existence theorems for hyperbolic systems of partial differential equations in two independent variables, Commun. Pure Appl. Math., 5 (1952), 119-154.  doi: 10.1002/cpa.3160050202.
    [15] J. Duchon and R. Robert, Global vortex sheet solutions of Euler equations in the plane, J. Differ. Equ., 73 (1988), 215-224.  doi: 10.1016/0022-0396(88)90105-2.
    [16] D. G. Ebin and J. Marsden, Groups of diffeomorphisms and the motion of an incompressible fluid, Ann. Math., 92 (1970), 102-163.  doi: 10.2307/1970699.
    [17] K. Friedrichs, Nonlinear hyperbolic differential equations for functions of two independent variables, Amer. J. Math., 70 (1948), 555-589.  doi: 10.2307/2372200.
    [18] I. GallagherD. Iftimie and F. Planchon, Asymptotics and stability for global solutions to the Navier-Stokes equations, Ann. Inst. Fourier (Grenoble), 53 (2003), 1387-1424. 
    [19] D. H. Kwan and T. T. Nguyen, Ill-posedness of the hydrostatic Euler and singular Vlasov equations, Arch. Ration. Mech. Anal., 221 (2016), 1317-1344.  doi: 10.1007/s00205-016-0985-z.
    [20] T. Kato, Perturbation theory for linear operators, Die Grundlehren der mathematischen Wissenschaften, Band 132, Springer-Verlag New York, Inc., New York, 1966.
    [21] H. Kielhöfer, Bifurcation theory: An introduction with applications to partial differential equations, volume 156, Springer Science & Business Media, 2011.
    [22] N. LernerY. Morimoto and C.-J. Xu, Instability of the Cauchy-Kovalevskaya solution for a class of nonlinear systems, Amer. J. Math., 132 (2010), 99-123.  doi: 10.1353/ajm.0.0096.
    [23] N. LernerT. Nguyen and B. Texier, The onset of instability in first-order systems, J. Euro. Math. Soc., 20 (2018), 1303-1373.  doi: 10.4171/JEMS/788.
    [24] D. Li and Y. G. Sinai, Complex singularities of the Burgers system and renormalization group method, in Current Developments in Mathematics, 2006, International Press of Boston, 2008.
    [25] D. Li and Y. G. Sinai, Blow ups of complex solutions of the 3D Navier-Stokes system and renormalization group method, J. Euro. Math. Soc., 10 (2008), 267-313.  doi: 10.4171/JEMS/111.
    [26] G. Métivier, Remarks on the well-posedness of the nonlinear Cauchy problem, in Geometric Analysis of PDE and Several Complex Variables: Dedicated to François Treves, American Mathematical Society, Providence, RI, 2005. doi: 10.1090/conm/368/06790.
    [27] B. Morisse, On hyperbolicity and Gevrey well-posedness. Part two: Scalar or degenerate transitions, J. Differ. Equ., 264 (2018), 5221-5262.  doi: 10.1016/j.jde.2018.01.011.
    [28] B. Morisse, On hyperbolicity and Gevrey well-posedness. Part one: the elliptic case, Ann. H. Lebesgue, 3 (2020), 1195-1239.  doi: 10.5802/alco.132.
    [29] K. Ndoumajoud and B. Texier, On Métivier's Lax-Mizohata theorem and extensions to weak defects of hyperbolicity, Part one, arXiv: 2012.08222, 2020.
    [30] K. Ndoumajoud and B. Texier, On Métivier's Lax-Mizohata theorem and extensions to weak defects of hyperbolicity, Part two, arXiv: 2103.02401, 2021.
    [31] L. Nirenberg., An abstract form of the nonlinear Cauchy-Kowalewski theorem., J. Differ. Geom., 6 (1972), 561-576. 
    [32] W. J. Ogden, A Complexified Model of the Navier-Stokes Equations with Fractional Dissipation, Undergraduate honors thesis, University of Minnesota, 2020.
    [33] P. Poláčik and V. Šverák, Zeros of complex caloric functions and singularities of complex viscous Burgers equation, 2008.
    [34] G. A. Seregin, Local regularity of suitable weak solutions to the Navier–Stokes equations near the boundary, J. Math. Fluid Mech., 4 (2002), 1-29.  doi: 10.1007/s00021-002-8533-z.
    [35] V. Šverák, On Certain Models in the PDE Theory of Fluid Flows, Journées équations aux dérivées partielles, 2017. doi: 10.5802/jedp.658.
    [36] V. Šverák, On singularities in the quaternionic Burgers equation, Ann. Math. Québec, (2022), 1-14.
    [37] T. Tao, The Euler-Arnold equation, 2010, URL: https://terrytao.wordpress.com/2010/06/07/the-euler-arnold-equation/. Last visited on July 16, 2023.
    [38] T. Tao, Finite time blowup for an averaged three-dimensional Navier-Stokes equation, J. Amer. Math. Soc., 29 (2016), 601-674.  doi: 10.1090/jams/838.
    [39] T. Tao, Finite time blowup for Lagrangian modifications of the three-dimensional Euler equation, Ann. Partial Differ. Equ., 2 (2016), 79 pp. doi: 10.1007/s40818-016-0019-z.
    [40] S. J. Wu, Mathematical analysis of vortex sheets, Commun. Pure Appl. Math., 59 (2006), 1065-1206.  doi: 10.1002/cpa.20110.
  • 加载中
SHARE

Article Metrics

HTML views(2446) PDF downloads(755) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return