We consider a complexification of the Euler equations introduced by Šverák in [35] which conserves energy. We prove that these complex Euler equations are nonlinearly ill-posed below analytic regularity and, moreover, we exhibit solutions which lose analyticity in finite time. Our examples are complex shear flows and, hence, one-dimensional. This motivates us to consider fully nonlinear systems in one spatial dimension which are non-hyperbolic near a constant equilibrium. We prove nonlinear ill-posedness and finite-time singularity for these models. Our approach is to construct an infinite-dimensional unstable manifold to capture the high frequency instability at the nonlinear level.
Citation: |
[1] |
D. M. Ambrose, J. L. Bona and T Milgrom, Global solutions and ill-posedness for the Kaup system and related Boussinesq systems, Indiana Univ. Math. J., 68 (2019), 1173-1198.
doi: 10.1512/iumj.2019.68.7721.![]() ![]() ![]() |
[2] |
V. Arnold, Sur la géométrie différentielle des groupes de Lie de dimension infinie et ses applications à l'hydrodynamique des fluides parfaits, Ann. Inst. Fourier (Grenoble), 16 (1966), 319-361.
![]() ![]() |
[3] |
H. Bahouri, J.-Y. Chemin and R. Danchin, Fourier Analysis and Nonlinear Partial Differential Equations, volume 343, Springer Science & Business Media, 2011.
doi: 10.1007/978-3-642-16830-7.![]() ![]() ![]() |
[4] |
L. Caffarelli, R. Kohn and L. Nirenberg, Partial regularity of suitable weak solutions of the Navier-Stokes equations, Commun. Pure Appl. Math., 35 (1982), 771-831.
doi: 10.1002/cpa.3160350604.![]() ![]() ![]() |
[5] |
R. E. Caflisch, Singularity formation for complex solutions of the 3d incompressible euler equations, Phys. D, 67 (1993), 1-18.
doi: 10.1016/0167-2789(93)90195-7.![]() ![]() ![]() |
[6] |
R. E. Caflisch and O. F. Orellana, Long time existence for a slightly perturbed vortex sheet, Commun. Pure Appl. Math., 39 (1986), 807-838.
doi: 10.1002/cpa.3160390605.![]() ![]() ![]() |
[7] |
R. E. Caflisch and O. F. Orellana, Singular solutions and ill-posedness for the evolution of vortex sheets, SIAM J. Math. Anal., 20 (1989), 293-307.
doi: 10.1137/0520020.![]() ![]() ![]() |
[8] |
H. Y. Cheng and R. de la Llave, Stable manifolds to bounded solutions in possibly ill-posed pdes, J. Differ. Equ., 268 (2020), 4830-4899.
doi: 10.1016/j.jde.2019.10.042.![]() ![]() ![]() |
[9] |
P. Constantin, P. D. Lax and A. Majda, A simple one-dimensional model for the three-dimensional vorticity equation, Commun. Pure Appl. Math., 38 (1985), 715-724.
doi: 10.1002/cpa.3160380605.![]() ![]() ![]() |
[10] |
P. Constantin, A. J. Majda and E. G. Tabak, Singular front formation in a model for quasigeostrophic flow, Phys. Fluids, 6 (1994), 9-11.
doi: 10.1063/1.868050.![]() ![]() ![]() |
[11] |
S. De Gregorio, On a one-dimensional model for the three-dimensional vorticity equation, J. Statist. Phys., 59 (1990), 1251-1263.
doi: 10.1007/BF01334750.![]() ![]() ![]() |
[12] |
R. de la Llave, A smooth center manifold theorem which applies to some ill-posed partial differential equations with unbounded nonlinearities, J. Dynam. Differ. Equ., 21 (2009), 371-415.
doi: 10.1007/s10884-009-9140-y.![]() ![]() ![]() |
[13] |
B. Desjardins and E. Grenier, On nonlinear Rayleigh–Taylor instabilities, Acta Math. Sinica, 22 (2006), 1007-1016.
doi: 10.1007/s10114-005-0559-8.![]() ![]() ![]() |
[14] |
A. Douglis, Some existence theorems for hyperbolic systems of partial differential equations in two independent variables, Commun. Pure Appl. Math., 5 (1952), 119-154.
doi: 10.1002/cpa.3160050202.![]() ![]() ![]() |
[15] |
J. Duchon and R. Robert, Global vortex sheet solutions of Euler equations in the plane, J. Differ. Equ., 73 (1988), 215-224.
doi: 10.1016/0022-0396(88)90105-2.![]() ![]() ![]() |
[16] |
D. G. Ebin and J. Marsden, Groups of diffeomorphisms and the motion of an incompressible fluid, Ann. Math., 92 (1970), 102-163.
doi: 10.2307/1970699.![]() ![]() ![]() |
[17] |
K. Friedrichs, Nonlinear hyperbolic differential equations for functions of two independent variables, Amer. J. Math., 70 (1948), 555-589.
doi: 10.2307/2372200.![]() ![]() ![]() |
[18] |
I. Gallagher, D. Iftimie and F. Planchon, Asymptotics and stability for global solutions to the Navier-Stokes equations, Ann. Inst. Fourier (Grenoble), 53 (2003), 1387-1424.
![]() ![]() |
[19] |
D. H. Kwan and T. T. Nguyen, Ill-posedness of the hydrostatic Euler and singular Vlasov equations, Arch. Ration. Mech. Anal., 221 (2016), 1317-1344.
doi: 10.1007/s00205-016-0985-z.![]() ![]() ![]() |
[20] |
T. Kato, Perturbation theory for linear operators, Die Grundlehren der mathematischen Wissenschaften, Band 132, Springer-Verlag New York, Inc., New York, 1966.
![]() ![]() |
[21] |
H. Kielhöfer, Bifurcation theory: An introduction with applications to partial differential equations, volume 156, Springer Science & Business Media, 2011.
![]() |
[22] |
N. Lerner, Y. Morimoto and C.-J. Xu, Instability of the Cauchy-Kovalevskaya solution for a class of nonlinear systems, Amer. J. Math., 132 (2010), 99-123.
doi: 10.1353/ajm.0.0096.![]() ![]() ![]() |
[23] |
N. Lerner, T. Nguyen and B. Texier, The onset of instability in first-order systems, J. Euro. Math. Soc., 20 (2018), 1303-1373.
doi: 10.4171/JEMS/788.![]() ![]() ![]() |
[24] |
D. Li and Y. G. Sinai, Complex singularities of the Burgers system and renormalization group method, in Current Developments in Mathematics, 2006, International Press of Boston, 2008.
![]() ![]() |
[25] |
D. Li and Y. G. Sinai, Blow ups of complex solutions of the 3D Navier-Stokes system and renormalization group method, J. Euro. Math. Soc., 10 (2008), 267-313.
doi: 10.4171/JEMS/111.![]() ![]() ![]() |
[26] |
G. Métivier, Remarks on the well-posedness of the nonlinear Cauchy problem, in Geometric Analysis of PDE and Several Complex Variables: Dedicated to François Treves, American Mathematical Society, Providence, RI, 2005.
doi: 10.1090/conm/368/06790.![]() ![]() ![]() |
[27] |
B. Morisse, On hyperbolicity and Gevrey well-posedness. Part two: Scalar or degenerate transitions, J. Differ. Equ., 264 (2018), 5221-5262.
doi: 10.1016/j.jde.2018.01.011.![]() ![]() ![]() |
[28] |
B. Morisse, On hyperbolicity and Gevrey well-posedness. Part one: the elliptic case, Ann. H. Lebesgue, 3 (2020), 1195-1239.
doi: 10.5802/alco.132.![]() ![]() ![]() |
[29] |
K. Ndoumajoud and B. Texier, On Métivier's Lax-Mizohata theorem and extensions to weak defects of hyperbolicity, Part one, arXiv: 2012.08222, 2020.
![]() |
[30] |
K. Ndoumajoud and B. Texier, On Métivier's Lax-Mizohata theorem and extensions to weak defects of hyperbolicity, Part two, arXiv: 2103.02401, 2021.
![]() |
[31] |
L. Nirenberg., An abstract form of the nonlinear Cauchy-Kowalewski theorem., J. Differ. Geom., 6 (1972), 561-576.
![]() ![]() |
[32] |
W. J. Ogden, A Complexified Model of the Navier-Stokes Equations with Fractional Dissipation, Undergraduate honors thesis, University of Minnesota, 2020.
![]() |
[33] |
P. Poláčik and V. Šverák, Zeros of complex caloric functions and singularities of complex viscous Burgers equation, 2008.
![]() |
[34] |
G. A. Seregin, Local regularity of suitable weak solutions to the Navier–Stokes equations near the boundary, J. Math. Fluid Mech., 4 (2002), 1-29.
doi: 10.1007/s00021-002-8533-z.![]() ![]() ![]() |
[35] |
V. Šverák, On Certain Models in the PDE Theory of Fluid Flows, Journées équations aux dérivées partielles, 2017.
doi: 10.5802/jedp.658.![]() ![]() |
[36] |
V. Šverák, On singularities in the quaternionic Burgers equation, Ann. Math. Québec, (2022), 1-14.
![]() |
[37] |
T. Tao, The Euler-Arnold equation, 2010, URL: https://terrytao.wordpress.com/2010/06/07/the-euler-arnold-equation/. Last visited on July 16, 2023.
![]() |
[38] |
T. Tao, Finite time blowup for an averaged three-dimensional Navier-Stokes equation, J. Amer. Math. Soc., 29 (2016), 601-674.
doi: 10.1090/jams/838.![]() ![]() ![]() |
[39] |
T. Tao, Finite time blowup for Lagrangian modifications of the three-dimensional Euler equation, Ann. Partial Differ. Equ., 2 (2016), 79 pp.
doi: 10.1007/s40818-016-0019-z.![]() ![]() ![]() |
[40] |
S. J. Wu, Mathematical analysis of vortex sheets, Commun. Pure Appl. Math., 59 (2006), 1065-1206.
doi: 10.1002/cpa.20110.![]() ![]() ![]() |