For the non-stationary Stokes system, it is well-known that one can improve spatial regularity in the interior, but not near the boundary if it is coupled with the no-slip boundary condition. In this note we show that, to the contrary, spatial regularity can be improved near a flat boundary if it is coupled with the Navier boundary condition, with either infinite or finite slip length. The case with finite slip length is more difficult than the case with infinite slip length.
Citation: |
[1] |
P. Acevedo Tapia, C. Amrouche and C. Conca, et al., Stokes and Navier–Stokes equations with Navier boundary conditions, J. Differ. Equ., 285 (2021), 258-320.
doi: 10.1016/j.jde.2021.02.045.![]() ![]() ![]() |
[2] |
H. Al Baba, C. Amrouche and M. Escobedo, Semi-group theory for the Stokes operator with Navier-type boundary conditions on L$^p$-spaces, Arch. Ration. Mech. Anal., 223 (2017), 881-940.
doi: 10.1007/s00205-016-1048-1.![]() ![]() ![]() |
[3] |
C. Amrouche and A. Rejaiba, L$^p$-theory for Stokes and Navier–Stokes equations with Navier boundary condition, J. Differ. Equ., 256 (2014), 1515-1547.
doi: 10.1016/j.jde.2013.11.005.![]() ![]() ![]() |
[4] |
C. Amrouche and N. E. H. Seloula, L$^p$-theory for vector potentials and Sobolev's inequalities for vector fields: Application to the Stokes equations with pressure boundary conditions, Math. Models Methods Appl. Sci., 23 (2013), 37-92.
doi: 10.1142/S0218202512500455.![]() ![]() ![]() |
[5] |
H. Beirão da Veiga, On the regularity of flows with Ladyzhenskaya shear-dependent viscosity and slip or non-slip boundary conditions, Comm. Pure Appl. Math., 58 (2005), 552-577.
doi: 10.1002/cpa.20036.![]() ![]() ![]() |
[6] |
L. Bocquet and J.-L. Barrat, Flow boundary conditions from nano- to micro-scales, Soft Matter, 3 (2007), 685-693.
![]() |
[7] |
T. Chang and K. Kang, On Caccioppoli's inequalities of Stokes equations and Navier–Stokes equations near boundary, J. Differ. Equ., 269 (2020), 6732-6757.
doi: 10.1016/j.jde.2020.05.013.![]() ![]() ![]() |
[8] |
T. Chang and K. Kang, Local regularity near boundary for the Stokes and Navier–Stokes equations, SIAM J. Math. Anal., 55 (2023), 5051-5085.
doi: 10.1137/22M150397X.![]() ![]() ![]() |
[9] |
T. Chang and K. Kang, Singular weak solutions near boundaries in a half-space away from localized force for the Stokes and Navier-Stokes equations, arXiv: 2303.05746.
![]() |
[10] |
N. V. Chemetov and Š. Nečasová, The motion of the rigid body in the viscous fluid including collisions. Global solvability result, Nonlinear Anal. Real World Appl., 34 (2017), 416-445.
doi: 10.1016/j.nonrwa.2016.09.011.![]() ![]() ![]() |
[11] |
C.-C. Chen, R. M. Strain and H.-T. Yau, et al., Lower bound on the blow-up rate of the axisymmetric Navier–Stokes equations, Int. Math. Res. Not., 2008 (2008), 1-31.
doi: 10.1093/imrn/rnn016.![]() ![]() ![]() |
[12] |
G.-Q. Chen and Z. Qian, A study of the Navier–Stokes equations with the kinematic and Navier boundary conditions, Indiana Univ. Math. J., 59 (2010), 721-760.
doi: 10.1512/iumj.2010.59.3898.![]() ![]() ![]() |
[13] |
H. Dong, D. Kim and T. Phan, Boundary Lebesgue mixed-norm estimates for non-stationary Stokes systems with VMO coefficients, Comm. Partial Differ. Equ., 47 (2022), 1700-1731.
doi: 10.1080/03605302.2022.2084627.![]() ![]() ![]() |
[14] |
R. Farwig and V. Rosteck, Resolvent estimates of the Stokes system with Navier boundary conditions in general unbounded domains, Adv. Differ. Equ., 21 (2016), 401-428.
![]() ![]() |
[15] |
R. Farwig and V. Rosteck, Maximal regularity of the Stokes system with Navier boundary condition in general unbounded domains, J. Math. Soc. Japan, 71 (2019), 1293-1319.
doi: 10.2969/jmsj/81038103.![]() ![]() ![]() |
[16] |
G. P. Galdi, An Introduction to the Mathematical Theory of the Navier-Stokes Equations, Steady-state problems, second edition, Springer Monographs in Mathematics, Springer, New York, 2011.
doi: 10.1007/978-0-387-09620-9.![]() ![]() ![]() |
[17] |
D. Gérard-Varet and M. Hillairet, Regularity issues in the problem of fluid structure interaction, Arch. Ration. Mech. Anal., 195 (2010), 375-407.
doi: 10.1007/s00205-008-0202-9.![]() ![]() ![]() |
[18] |
D. Gérard-Varet, M. Hillairet and C. Wang, The influence of boundary conditions on the contact problem in a 3D Navier-Stokes flow, J. Math. Pures Appl., 103 (2015), 1-38.
doi: 10.1016/j.matpur.2014.03.005.![]() ![]() ![]() |
[19] |
D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Classics in Mathematics, Springer-Verlag, Berlin, 2001, Reprint of the 1998 edition.
![]() ![]() |
[20] |
S. Gustafson, K. Kang and T.-P. Tsai, Regularity criteria for suitable weak solutions of the Navier–Stokes equations near the boundary, J. Differ. Equ., 226 (2006), 594-618.
doi: 10.1016/j.jde.2005.12.007.![]() ![]() ![]() |
[21] |
M. Hillairet, Lack of collision between solid bodies in a 2D incompressible viscous flow, Comm. Partial Differ. Equ., 32 (2007), 1345-1371.
doi: 10.1080/03605300601088740.![]() ![]() ![]() |
[22] |
M. Hillairet and T. Takahashi, Collisions in three-dimensional fluid structure interaction problems, SIAM J. Math. Anal., 40 (2009), 2451-2477.
doi: 10.1137/080716074.![]() ![]() ![]() |
[23] |
W. Jäger and A. Mikelić, On the roughness-induced effective boundary conditions for an incompressible viscous flow, J. Differ. Equ., 170 (2001), 96-122.
doi: 10.1006/jdeq.2000.3814.![]() ![]() ![]() |
[24] |
S. Jiménez Bolaños and B. Vernescu, Derivation of the Navier slip and slip length for viscous flows over a rough boundary, Phys. Fluids, 29 (2017), 9 pp.
doi: 10.1063/1.4982899.![]() ![]() |
[25] |
B. J. Jin, Š. Nečasová and F. Oschmann, et al., Collision/No-collision results of a solid body with its container in a 3D compressible viscous fluid, arXiv: 2210.04698v2.
![]() |
[26] |
K. Kang, On regularity of stationary Stokes and Navier–Stokes equations near boundary, J. Math. Fluid Mech., 6 (2004), 78-101.
doi: 10.1007/s00021-003-0084-3.![]() ![]() ![]() |
[27] |
K. Kang, Unbounded normal derivative for the Stokes system near boundary, Math. Ann., 331 (2004), 87-109.
doi: 10.1007/s00208-004-0575-5.![]() ![]() ![]() |
[28] |
K. Kang, B. Lai and C.-C. Lai, et al., Finite energy Navier-Stokes flows with unbounded gradients induced by localized flux in the half-space, Trans. Amer. Math. Soc., 375 (2022), 6701-6746.
doi: 10.1090/tran/8739.![]() ![]() ![]() |
[29] |
K. Kang, B. Lai and C.-C. Lai, et al., The Green tensor of the nonstationary Stokes system in the half space, Commun. Math. Phys., 399 (2023), 1291-1372.
doi: 10.1007/s00220-022-04623-3.![]() ![]() ![]() |
[30] |
K. Kang and C. Min, Local and global regularity for the Stokes and Navier–Stokes equations with boundary data in the half-space, Submitted to CPAA special volume for Sverak, (2023).
![]() |
[31] |
J. B. Keller, Oblique derivative boundary conditions and the image method, SIAM J. Appl. Math., 41 (1981), 294-300.
doi: 10.1137/0141024.![]() ![]() ![]() |
[32] |
P. Kučera and J. Neustupa, On robustness of a strong solution to the Navier–Stokes equations with Navier's boundary conditions in the L$^3$-norm, Nonlinearity, 30 (2017), 1564-1583.
doi: 10.1088/1361-6544/aa6166.![]() ![]() ![]() |
[33] |
E. Lauga, M. Brenner, and H. Stone, Microfluidics: The no-slip boundary condition, In C. Tropea, A. L. Yarin, and J. F. Foss, editors, Springer Handbook of Experimental Fluid Mechanics, chapter 19, pages 1219–1240. Springer Berlin, Heidelberg, 2007.
![]() |
[34] |
F. Lin, Y. Sire and J. Wei, et al., Nematic liquid crystal flow with partially free boundary, Arch. Ration. Mech. Anal., 247 (2023), 54 pp.
doi: 10.1007/s00205-023-01859-8.![]() ![]() ![]() |
[35] |
Y. Luo and T.-P. Tsai, Regularity criteria in weak L$^3$ for 3D incompressible Navier–Stokes equations, Funkcial. Ekvac., 58 (2015), 387-404.
doi: 10.1619/fesi.58.387.![]() ![]() ![]() |
[36] |
C. Neto, D. R. Evans and E. Bonaccurso, et al., Boundary slip in Newtonian liquids: a review of experimental studies, Rep. Prog. Phys., 68 (2005), 2859-2897.
![]() |
[37] |
J. Ou, B. Perot and J. P. Rothstein, Laminar drag reduction in microchannels using ultrahydrophobic surfaces, Phys. Fluids, 16 (2004), 4635-4643.
![]() |
[38] |
G. A. Seregin, Local regularity of suitable weak solutions to the Navier–Stokes equations near the boundary, J. Math. Fluid Mech., 4 (2002), 1-29.
doi: 10.1007/s00021-002-8533-z.![]() ![]() ![]() |
[39] |
G. A. Seregin, Some estimates near the boundary for solutions to the nonstationary linearized Navier–Stokes equations, J. Math. Sci., 115 (2003), 2820-2831.
doi: 10.1023/A:1023330105200.![]() ![]() ![]() |
[40] |
G. A. Seregin and V. Šverák, On a bounded shear flow in a half-space, J. Math. Sci., 178 (2011), 353-356.
doi: 10.1007/s10958-011-0552-y.![]() ![]() ![]() |
[41] |
Y. Shibata and R. Shimada, On a generalized resolvent estimate for the Stokes system with Robin boundary condition, J. Math. Soc. Japan, 59 (2007), 469-519.
![]() ![]() |
[42] |
T. Sochi, Slip at fluid-solid interface, Polym. Rev., 51 (2011), 309-340.
![]() |
[43] |
V. A. Solonnikov and V. E. Ščadilov, A certain boundary value problem for the stationary system of Navier-Stokes equations. Boundary value problems of mathematical physics, 8, Trudy Mat. Inst. Steklov., pages 196–210,235, 1973, Translation in Proc. Steklov Inst. Math. 125 (1973), 186-199.
![]() ![]() |
[44] |
V. Šverák and T.-P. Tsai, On the spatial decay of 3-D steady-state Navier-Stokes flows, Comm. Partial Differ. Equ., 25 (2000), 2107-2117.
doi: 10.1080/03605300008821579.![]() ![]() ![]() |