\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Multi-parameter perturbations for the space-periodic heat equation

  • *Corresponding author: Paolo Musolino

    *Corresponding author: Paolo Musolino

M. D. R., P. L. and P. M. are supported by the "INdAM GNAMPA Project" codice CUP_E53C22001930001 "Operatori differenziali e integrali in geometria spettrale" and of the project funded by the EuropeanUnion – NextGenerationEU under the National Recovery and Resilience Plan (NRRP), Mission 4 Component 2 Investment 1.1 - Call PRIN 2022 No. 104 of February 2, 2022 of Italian Ministry of University and Research; Project 2022SENJZ3 (subject area: PE - Physical Sciences and Engineering) "Perturbation problems and asymptotics for elliptic differential equations: variational and potential theoretic methods". P. M. and R. M. are also supported by the SPIN Project "DOMain perturbation problems and INteractions Of scales - DOMINO" of the Ca' Foscari University of Venice and the support from EU through the H2020-MSCA-RISE-2020 project EffectFact, Grant agreement ID: 101008140.

Abstract / Introduction Full Text(HTML) Figure(1) Related Papers Cited by
  • This paper is divided into three parts. The first part focuses on periodic layer heat potentials, demonstrating their smooth dependence on regular perturbations of the support of integration. In the second part, we present an application of the results from the first part. Specifically, we consider a transmission problem for the heat equation in a periodic domain and we show that the solution depends smoothly on the shape of the transmission interface, boundary data, and transmission parameters. Finally, in the last part of the paper, we fix all parameters except for the transmission parameters and outline a strategy to deduce an explicit expansion of the solution using Neumann-type series.

    Mathematics Subject Classification: Primary: 35K20; 31B10. Secondary: 35B10; 47H30; 45A05.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  The sets $ \mathbb{S}[\phi]^- $, $ \mathbb{S}[\phi] $, and $ \phi(\partial\Omega) $ in case $ n = 2 $

  • [1] S. BernsteinS. Ebert and R. Sören Kraußhar, On the diffusion equation and diffusion wavelets on flat cylinders and the $n$-torus, Math. Methods Appl. Sci., 34 (2011), 428-441.  doi: 10.1002/mma.1369.
    [2] R. ChapkoR. Kress and J. R. Yoon, On the numerical solution of an inverse boundary value problem for the heat equation, Inverse Probl., 14 (1998), 853-867.  doi: 10.1088/0266-5611/14/4/006.
    [3] M. Dalla Riva and M. Lanza de Cristoforis, A perturbation result for the layer potentials of general second order differential operators with constant coefficients, J. Appl. Funct. Anal., 5 (2010), 10-30. 
    [4] M. Dalla Riva, M. Lanza de Cristoforis and P. Musolino, Singularly Perturbed Boundary Value Problems: A Functional Analytic Approach, Springer Nature, Cham, 2021. doi: 10.1007/978-3-030-76259-9.
    [5] M. Dalla Riva and P. Luzzini, Regularity of layer heat potentials upon perturbation of the space support in the optimal Hölder setting, Differ. Integral Equ., 36 (2023), 971-1003.  doi: 10.57262/die036-1112-971.
    [6] M. Dalla Riva, P. Luzzini and P. Musolino, et al., Dependence of effective properties upon regular perturbations, in Mechanics and Physics of Structured Media. Asymptotic and Integral Equations Methods of Leonid Filshtinsky, Academic Press, Elsevier, London, 2022, pp. 271-301.
    [7] D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Reprint of the 1998 edition. Classics in Mathematics. Springer-Verlag, Berlin, 2001.
    [8] H. Haddar and R. Kress, On the Fréchet derivative for obstacle scattering with an impedance boundary condition, SIAM J. Appl. Math., 65 (2004), 194-208.  doi: 10.1137/S0036139903435413.
    [9] A. Henrot and M. Pierre, Variation et Optimisation de Formes, Vol. 48 of Mathématiques & Applications (Berlin), Springer, Berlin, 2005. doi: 10.1007/3-540-37689-5.
    [10] F. Hettlich and W. Rundell, Identification of a discontinuous source in the heat equation, Inverse Probl., 17 (2001), 1465-1482.  doi: 10.1088/0266-5611/17/5/315.
    [11] E. Hille and R.S. Phillips, Functional Analysis and Semi-Groups, American Mathematical Society Colloquium Publications, vol. 31, American Mathematical Society, Providence, R. I., 1957.
    [12] S. HofmannJ. Lewis and M. Mitrea, Spectral properties of parabolic layer potentials and transmission boundary problems in nonsmooth domains, Illinois J. Math., 47 (2003), 1345-1361. 
    [13] C. Jerez-HanckesC. Schwab and J. Zech, Electromagnetic wave scattering by random surfaces: shape holomorphy, Math. Models Methods Appl. Sci., 27 (2017), 2229-2259.  doi: 10.1142/S0218202517500439.
    [14] A. Kirsch, The domain derivative and two applications in inverse scattering theory, Inverse Probl., 9 (1993), 81-96. 
    [15] O. A. Ladyženskaja, V. A. Solonnikov, and N. N. Ural'ceva, Linear and Quasilinear Equations of Parabolic Type, (Russian) Translated from the Russian by S. Smith. Translations of Mathematical Monographs, 23 American Mathematical Society, Providence, R.I. 1968.
    [16] M. Lanza de Cristoforis, Perturbation problems in potential theory, a functional analytic approach, J. Appl. Funct. Anal., 2 (2007), 197-222. 
    [17] M. Lanza de Cristoforis and P. Musolino, A perturbation result for periodic layer potentials of general second order differential operators with constant coefficients, Far East J. Math. Sci., 52 (2011), 75-120. 
    [18] M. Lanza de Cristoforis and L. Rossi, Real analytic dependence of simple and double-layer potentials upon perturbation of the support and of the density, J. Integral Equ. Appl., 16 (2004), 137-174.  doi: 10.1216/jiea/1181075272.
    [19] M. Lanza de Cristoforis and L. Rossi, Real analytic dependence of simple and double-layer potentials for the Helmholtz equation upon perturbation of the support and of the density, In Analytic methods of analysis and differential equations: AMADE 2006, Camb. Sci. Publ., Cambridge, 2008, pp. 193-220.
    [20] P. Luzzini, Regularizing properties of space-periodic layer heat potentials and applications to boundary value problems in periodic domains, Math. Methods Appl. Sci., 43 (2020), 5273-5294.  doi: 10.1002/mma.6269.
    [21] P. Luzzini and P. Musolino, Periodic transmission problems for the heat equation, in Integral Methods in Science and Engineering, 211–223, Birkhäuser/Springer, Cham, 2019.
    [22] M. A. Pinsky, Introduction to Fourier Analysis and Wavelets, Reprint of the 2002 original, Graduate Studies in Mathematics, 102, American Mathematical Society, Providence, RI, 2009. doi: 10.1090/gsm/102.
    [23] R. Potthast, Fréchet differentiability of boundary integral operators in inverse acoustic scattering, Inverse Probl., 10 (1994), 431-447. 
    [24] T. QiuA. Rieder and F. J. Sayas, et al., Time-domain boundary integral equation modeling of heat transmission problems, Numer. Math., 143 (2019), 223-259.  doi: 10.1007/s00211-019-01040-y.
    [25] J. Sokołowski and J.-P. Zolésio, Introduction to Shape Optimization. Shape Sensitivity Analysis, Vol. 16 of Springer Series in Computational Mathematics, Springer-Verlag, Berlin, 1992. doi: 10.1007/978-3-642-58106-9.
    [26] G. Verchota, Layer potentials and regularity for the Dirichlet problem for Laplace's equation in Lipschitz domains, J. Funct. Anal., 59 (1984), 572-611.  doi: 10.1016/0022-1236(84)90066-1.
  • 加载中

Figures(1)

SHARE

Article Metrics

HTML views(1982) PDF downloads(175) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return