This paper is divided into three parts. The first part focuses on periodic layer heat potentials, demonstrating their smooth dependence on regular perturbations of the support of integration. In the second part, we present an application of the results from the first part. Specifically, we consider a transmission problem for the heat equation in a periodic domain and we show that the solution depends smoothly on the shape of the transmission interface, boundary data, and transmission parameters. Finally, in the last part of the paper, we fix all parameters except for the transmission parameters and outline a strategy to deduce an explicit expansion of the solution using Neumann-type series.
Citation: |
[1] |
S. Bernstein, S. Ebert and R. Sören Kraußhar, On the diffusion equation and diffusion wavelets on flat cylinders and the $n$-torus, Math. Methods Appl. Sci., 34 (2011), 428-441.
doi: 10.1002/mma.1369.![]() ![]() ![]() |
[2] |
R. Chapko, R. Kress and J. R. Yoon, On the numerical solution of an inverse boundary value problem for the heat equation, Inverse Probl., 14 (1998), 853-867.
doi: 10.1088/0266-5611/14/4/006.![]() ![]() ![]() |
[3] |
M. Dalla Riva and M. Lanza de Cristoforis, A perturbation result for the layer potentials of general second order differential operators with constant coefficients, J. Appl. Funct. Anal., 5 (2010), 10-30.
![]() ![]() |
[4] |
M. Dalla Riva, M. Lanza de Cristoforis and P. Musolino, Singularly Perturbed Boundary Value Problems: A Functional Analytic Approach, Springer Nature, Cham, 2021.
doi: 10.1007/978-3-030-76259-9.![]() ![]() ![]() |
[5] |
M. Dalla Riva and P. Luzzini, Regularity of layer heat potentials upon perturbation of the space support in the optimal Hölder setting, Differ. Integral Equ., 36 (2023), 971-1003.
doi: 10.57262/die036-1112-971.![]() ![]() ![]() |
[6] |
M. Dalla Riva, P. Luzzini and P. Musolino, et al., Dependence of effective properties upon regular perturbations, in Mechanics and Physics of Structured Media. Asymptotic and Integral Equations Methods of Leonid Filshtinsky, Academic Press, Elsevier, London, 2022, pp. 271-301.
![]() |
[7] |
D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Reprint of the 1998 edition. Classics in Mathematics. Springer-Verlag, Berlin, 2001.
![]() ![]() |
[8] |
H. Haddar and R. Kress, On the Fréchet derivative for obstacle scattering with an impedance boundary condition, SIAM J. Appl. Math., 65 (2004), 194-208.
doi: 10.1137/S0036139903435413.![]() ![]() ![]() |
[9] |
A. Henrot and M. Pierre, Variation et Optimisation de Formes, Vol. 48 of Mathématiques & Applications (Berlin), Springer, Berlin, 2005.
doi: 10.1007/3-540-37689-5.![]() ![]() ![]() |
[10] |
F. Hettlich and W. Rundell, Identification of a discontinuous source in the heat equation, Inverse Probl., 17 (2001), 1465-1482.
doi: 10.1088/0266-5611/17/5/315.![]() ![]() ![]() |
[11] |
E. Hille and R.S. Phillips, Functional Analysis and Semi-Groups, American Mathematical Society Colloquium Publications, vol. 31, American Mathematical Society, Providence, R. I., 1957.
![]() ![]() |
[12] |
S. Hofmann, J. Lewis and M. Mitrea, Spectral properties of parabolic layer potentials and transmission boundary problems in nonsmooth domains, Illinois J. Math., 47 (2003), 1345-1361.
![]() ![]() |
[13] |
C. Jerez-Hanckes, C. Schwab and J. Zech, Electromagnetic wave scattering by random surfaces: shape holomorphy, Math. Models Methods Appl. Sci., 27 (2017), 2229-2259.
doi: 10.1142/S0218202517500439.![]() ![]() ![]() |
[14] |
A. Kirsch, The domain derivative and two applications in inverse scattering theory, Inverse Probl., 9 (1993), 81-96.
![]() ![]() |
[15] |
O. A. Ladyženskaja, V. A. Solonnikov, and N. N. Ural'ceva, Linear and Quasilinear Equations of Parabolic Type, (Russian) Translated from the Russian by S. Smith. Translations of Mathematical Monographs, 23 American Mathematical Society, Providence, R.I. 1968.
![]() ![]() |
[16] |
M. Lanza de Cristoforis, Perturbation problems in potential theory, a functional analytic approach, J. Appl. Funct. Anal., 2 (2007), 197-222.
![]() ![]() |
[17] |
M. Lanza de Cristoforis and P. Musolino, A perturbation result for periodic layer potentials of general second order differential operators with constant coefficients, Far East J. Math. Sci., 52 (2011), 75-120.
![]() ![]() |
[18] |
M. Lanza de Cristoforis and L. Rossi, Real analytic dependence of simple and double-layer potentials upon perturbation of the support and of the density, J. Integral Equ. Appl., 16 (2004), 137-174.
doi: 10.1216/jiea/1181075272.![]() ![]() ![]() |
[19] |
M. Lanza de Cristoforis and L. Rossi, Real analytic dependence of simple and double-layer potentials for the Helmholtz equation upon perturbation of the support and of the density, In Analytic methods of analysis and differential equations: AMADE 2006, Camb. Sci. Publ., Cambridge, 2008, pp. 193-220.
![]() ![]() |
[20] |
P. Luzzini, Regularizing properties of space-periodic layer heat potentials and applications to boundary value problems in periodic domains, Math. Methods Appl. Sci., 43 (2020), 5273-5294.
doi: 10.1002/mma.6269.![]() ![]() ![]() |
[21] |
P. Luzzini and P. Musolino, Periodic transmission problems for the heat equation, in Integral Methods in Science and Engineering, 211–223, Birkhäuser/Springer, Cham, 2019.
![]() ![]() |
[22] |
M. A. Pinsky, Introduction to Fourier Analysis and Wavelets, Reprint of the 2002 original, Graduate Studies in Mathematics, 102, American Mathematical Society, Providence, RI, 2009.
doi: 10.1090/gsm/102.![]() ![]() ![]() |
[23] |
R. Potthast, Fréchet differentiability of boundary integral operators in inverse acoustic scattering, Inverse Probl., 10 (1994), 431-447.
![]() ![]() |
[24] |
T. Qiu, A. Rieder and F. J. Sayas, et al., Time-domain boundary integral equation modeling of heat transmission problems, Numer. Math., 143 (2019), 223-259.
doi: 10.1007/s00211-019-01040-y.![]() ![]() ![]() |
[25] |
J. Sokołowski and J.-P. Zolésio, Introduction to Shape Optimization. Shape Sensitivity Analysis, Vol. 16 of Springer Series in Computational Mathematics, Springer-Verlag, Berlin, 1992.
doi: 10.1007/978-3-642-58106-9.![]() ![]() ![]() |
[26] |
G. Verchota, Layer potentials and regularity for the Dirichlet problem for Laplace's equation in Lipschitz domains, J. Funct. Anal., 59 (1984), 572-611.
doi: 10.1016/0022-1236(84)90066-1.![]() ![]() ![]() |
The sets