Our aim in this article is to study the well-posedness of the generalized logarithmic nonlinear Cahn-Hilliard equation with regularization and proliferation terms. We are interested in studying the asymptotic behavior, in terms of finite-dimensional attractors, of the dynamical system associated with the problem and majorate the rate of convergence between the solutions of the Cahn-Hilliard equation and the regularized one. Additionally, we present some further regularity results and subsequently prove a strict separation property of the solution. Finally, we provide some numerical simulations to compare the solution with and without the regularization term, and more.
Citation: |
[1] | J. W. Cahn and J. W. Hilliard, Free energy of a nonuniform systemI. Interfacial free energy, J. Chem. Phys., 28 (1958), 258-267. |
[2] | J. W. Cahn, On spinodal decomposition, Acta Metall, 9 (1961), 795-801. |
[3] | V. Chalupecki, Numerical studies of Cahn-Hilliard equations and applications in image processing, Proceedings of Czech-Japanese Seminar in Applied Mathematics, 4-7 August, 2004, Czech Technical University in Prague, 2004. |
[4] | L. Cherfils, A. Miranville and S. Zelik, The Cahn-Hilliard equation with logarithmic potentials, Milan J. Math., 79, (2011), 561-596. doi: 10.1007/s00032-011-0165-4. |
[5] | L. Cherfils, A. Miranville and S. Zelik, On a generalized Cahn-Hilliard equation with biological applications, Discrete Cont. Dyn. Syst. B, 19 (2014), 2013-2026. doi: 10.3934/dcdsb.2014.19.2013. |
[6] | D. Cohen and J. M. Murray, A generalized diffusion model for growth and dispersion in a population, J. Math. Biol., 12 (1981), 237-249. doi: 10.1007/BF00276132. |
[7] | I. C. Dolcetta, S. F. Vita and R. March, Area-preserving curve-shortening flows: From phase separation to image processing, Interfaces Free Bound., 4 (2002), 325-343. doi: 10.4171/IFB/64. |
[8] | M. Efendiev, A. Miranville and S. Zelik, Exponential attractors for a singular perturbed Cahn-Hilliard system, Math. Nachr., 272 (2004), 11-31. doi: 10.1002/mana.200310186. |
[9] | C. M. Elliott, The Cahn-Hilliard model for the kinetics of phases separation, in Mathematical Models for Phase Change Problems, Rodrigues, J.F. (ed.), International Series of Numerical Mathematics, vol. 88. Birkhöuser, Basel (1989). |
[10] | S. Frigeri and M. Grasselli, Nonlocal Cahn-Hilliard-Navier-Stockes systems with singular potentials, Dyn. PDF, 9 (2012), 273-304. doi: 10.4310/DPDE.2012.v9.n4.a1. |
[11] | E. Khain and L. M. Sander, A generalized Cahn-Hilliard equation for biological applications, Phys. Rev. E, 77 (2008), 051129, 7 pp. |
[12] | I. Klapper and J. Dockery, Role of cohesion in the material description of biofilms, Phys. Rev. E, 74 (2006), 0319021, 8 pp. doi: 10.1103/PhysRevE.74.031902. |
[13] | R. V. Kohn and F. Otto, Upper bounds for coarsening rates, Commun. Math. Phys., 229 (2002), 375-395. doi: 10.1007/s00220-002-0693-4. |
[14] | J. S. Langer, Theory of spinodal decomposition in alloys, Ann. Phys., 65 (1975), 53-86. |
[15] | S. Maier-Paape and T. Wanner, Spinodal decomposition for the Cahn-Hilliard equation in higher dimensions. Part Ⅰ: Probability and wavelength estimate, Commun. Math. Phys., 195 (1998), 435-464. doi: 10.1007/s002200050397. |
[16] | S. Maier-Paape and T. Wanner, Spinodal decomposition for the Cahn-Hilliard equation in higher dimensions: nonlinear dynamics, Arch. Ration. Mech. Anal., 151 (2000), 187-219. doi: 10.1007/s002050050196. |
[17] | R. Mheich, Cahn-Hilliard Equation with Regularization Term, Asymp. Anal., 133 (2023), 499-533. doi: 10.3233/ASY-221821. |
[18] | M. K. Miller, J. M. Hyde and M. G. Hetherington, et al., Spinodal decomposition in Fe-Cr alloys: Experimental study at the atomic level and comparison with computer models-Ⅰ. Introduction and methodolog, Acta Metall. Mater., 43 (1995), 3385-3401. |
[19] | M. K. Miller, J. M. Hyde and M. G. Hetherington, et al., Spinodal decomposition in Fe-Cr alloys: Experimental study at the atomic level and comparison with computer models-Ⅱ. Development of domain size and composition amplitude, Acta Metall. Mater., 43 (1995), 3403-3413. |
[20] | M. K. Miller, J. M. Hyde and M. G. Hetherington, et al., Spinodal decomposition in Fe-Cr alloys: Experimental study at the atomic level and comparison with computer models-Ⅲ. Development of morphology, Acta Metall. Mater., 43 (1995), 3415-3426. |
[21] | A. Miranville and S. Zelik, Robust exponential attractors for Cahn-Hilliard type equations with singular potential, Math. Meth. Appl. Sci., 27 (2004), 545-582. doi: 10.1002/mma.464. |
[22] | A. Miranville, Asymptotic behavior of a generalized Cahn-Hilliard equation with a proliferation term, Appl. Anal., 92 (2013), 1308-1321. doi: 10.1080/00036811.2012.671301. |
[23] | A. Miranville, A generalized Cahn-Hilliard equation with logarithmic potentials, in Continuous and Distribued Systems II, Springer, 137-148, 2015. doi: 10.1007/978-3-319-19075-4_8. |
[24] | A. Miranville, The Cahn-Hilliard Equation: Recent Advances and Applications, CBMS-NSF Regional Conference Series in Applied Mathematics, 2019. doi: 10.1137/1.9781611975925. |
[25] | A. Novick-Cohen, The Cahn-Hilliard equation: mathematical and modeling perspectives, Adv. Math. Sci. Appl., 8 (1998), 965-985. |
[26] | A. Novick-Cohen, The Cahn-Hilliard equation, In: Dafermos, C.M., Pokorny, M. (eds.) Handbook of Differential Equations, Evolutionary Partial Differential Equations, vol. 4, pp. 201-228. Elsevier, Amsterdam (2008). doi: 10.1016/S1874-5717(08)00004-2. |
[27] | Y. Oono and S. Puri, Computationally efficient modeling of ordering of quenched phases, Phys. Rev. Lett., 58 (1987), 836-839. |
[28] | A. Oron, S. H. Davis and S. G. Bankoff, Long-scale evolution of thin liquid films, Rev. Mod. Phys., 69 (1997), 931-980. |
[29] | U. Thiele and E. Knobloch, Thin liquid films on slightly inclined heated plate, Phys. D, 190 (2004), 213-248. doi: 10.1016/j.physd.2003.09.048. |
[30] | S. Tremaine, On the origin of irregular structure in Saturn's ring, Astron. J., 125 (2003), 894-901. |
[31] | S. Villain-Guillot, Phases modulées et dynamique de Cahn-Hilliard, Université Bordeaux 1, 2010. |
The solution
The solution
The solution
The solution
The solution
The solution
The solution
The solution
The solution
The solution
The solution