Early Access articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Early Access publication benefits the research community by making new scientific discoveries known as quickly as possible.
Readers can access Early Access articles via the “Early Access” tab for the selected journal.
Distributed optimal control problems for a binary mixture of non-isothermal, incompressible, and non-Newtonian fluids under the framework of diffusive Johnson–Segalman models will be discussed. The flow is governed by a coupling of the two-dimensional Cahn–Hilliard equation for the order-parameter and chemical potential, the biharmonic heat equation with Voigt-type damping for the temperature, the incompressible Navier–Stokes equation for the mean velocity, and a Jeffreys-type differential constitutive equation for the viscoelastic stress tensor. The total Cauchy stress tensor for the model is given by the sum of the viscous stress, the contribution due to surface tension, and a quadratic function of the viscoelastic stress. The latter is based on a recent non-standard constitutive law for the Helmholtz free energy. The coefficients pertaining to diffusion processes depend on the concentration and temperature. We provide regularity results for the optimal control with various objective cost functionals. Such results rely on careful analysis of the corresponding linearized and adjoint problems. In particular, we study the strong, weak, and very weak solutions of the linearized and adjoint systems, and present the function spaces for the distributional time-derivatives.
Citation: |
[1] | F. Abergel and R. Temam, On some control problems in fluid mechanics, Theor. Comput. Fluid Dyn., 1 (1990), 303-325. doi: 10.1007/BF00271794. |
[2] | R. A. Adams, Sobolev Spaces, Academic Press, New York, 1975. |
[3] | S. Agmon, Lectures on Elliptic Boundary Value Problems, AMS Chelsea Publishing, Providence, 2010. |
[4] | C. T. Anh and T. M. Nguyet, Optimal control of the instationary three dimensional Navier–Stokes–Voigt equations, Numer. Funct. Anal. Optim., 37 (2016), 415-439. doi: 10.1080/01630563.2015.1136891. |
[5] | C. T. Anh and T. M. Nguyet, Discontinuous Galerkin approximations for an optimal control problem of three-dimensional Navier–Stokes–Voigt equations, Numer. Math., 145 (2020), 727-769. doi: 10.1007/s00211-020-01132-0. |
[6] | J. W. Barrett and S. Boyaval, Existence and approximation of a (regularized) Oldroyd-B model, Math. Models Methods Appl. Sci., 21 (2011), 1783-1837. doi: 10.1142/S0218202511005581. |
[7] | M. Bathory, Analysis of Unsteady Flows of Incompressible Heat-Conducting Rate-Type Viscoelastic Fluids with Stress Diffusion, PhD thesis, Mathematical Institute of Charles University, 2006. |
[8] | M. Bathory, M. Bulíček and J. Málek, Large data existence theory for three-dimensional unsteady flows of rate-type viscoelastic fluids with stress diffusion, Adv. Nonlinear Anal., 10 (2021), 501-521. doi: 10.1515/anona-2020-0144. |
[9] | J. L. Boldrini, E. Fernandéz-Cara and M. A. Rojas-Medar, An optimal control problem for a generalized Boussinesq model: The time dependent case, Rev. Mat. Complut., 20 (2007), 339-366. doi: 10.5209/rev_REMA.2007.v20.n2.16487. |
[10] | F. Boyer, Mathematical study of multi-phase flow under shear through order parameter formulation, Asymptot. Anal., 20 (1999), 175-212. |
[11] | A. Brunk and M. Lukáčová-Medvid'ová, Global existence of weak solutions to viscoelastic phase separation part: I. Regular case, Nonlinearity, 35 (2022), 3417. doi: 10.1088/1361-6544/ac5920. |
[12] | A. Brunk, Y. Lu and M. Lukáčová-Medvid'ová, Existence, regularity and weak-strong uniqueness for three-dimensional Peterlin viscoelastic model, Commun. Math. Sci., 20 (2022), 201-230. doi: 10.4310/CMS.2022.v20.n1.a6. |
[13] | G. Caginalp, An analysis of a phase-field model of a free boundary, Arch. Ration. Mech. Anal., 92 (1986), 205-245. doi: 10.1007/BF00254827. |
[14] | J. W. Cahn and J. E. Hilliard, Free energy of a nonuniform system. I. Interfacial free energy, J. Chem. Phys., 28 (1958), 258-267. doi: 10.1063/1.1744102. |
[15] | E. Casas and K. Kunisch, Well-posedness of evolutionary Navier–Stokes equations with forces of low regularity on two dimensional domains, ESAIM Control Optim. Calc. Var., 27 (2021), 25 pp. doi: 10.1051/cocv/2021058. |
[16] | R. Chella and J. Viñals, Mixing of a two-phase fluid by cavity flow, Phys. Rev. E, 53 (1996), 3832-3840. doi: 10.1103/PhysRevE.53.3832. |
[17] | C. I. Christov, On a higher-gradient generalization of Fourier's law of heat conduction, AIP Conf. Proc., 946 (2007), 11-12. doi: 10.1063/1.2806035. |
[18] | L. Chupin, Existence result for a mixture of non-Newtonian flows with stress diffusion using the Cahn–Hilliard formulation, Discrete Contin. Dyn. Syst.-B, 3 (2003), 45-68. doi: 10.3934/dcdsb.2003.3.45. |
[19] | L. Chupin and S. Martin, Stationary Oldroyd model with diffusive stress: Mathematical analysis of the model and vanishing diffusion process, J. Non-Newton. Fluid Mech., 218 (2015), 27-39. doi: 10.1016/j.jnnfm.2015.01.004. |
[20] | P. Colli, G. Gilardi and G. Marinoschi, et al., Optimal control for a conserved phase field system with a possibly singular potential, Evol. Equ. Control. Theory, 7 (2018), 95-116. doi: 10.3934/eect.2018006. |
[21] | P. Colli, G. Gilardi and A. Signori, et al., On a Cahn–Hilliard system with source term and thermal memory, Nonlinear Anal., 240 (2024), 16 pp. doi: 10.1016/j.na.2023.113461. |
[22] | P. Colli and J. Sprekels, Optimal control of an Allen–Cahn equation with singular potentials and dynamic boundary condition, SIAM J. Control Optim., 53 (2015), 213-234. doi: 10.1137/120902422. |
[23] | P. Colli and J. Sprekels, A boundary control problem for the pure Cahn–Hilliard equation with dynamic boundary conditions, Adv. Nonlinear Anal., 4 (2015), 311-325. doi: 10.1515/anona-2015-0035. |
[24] | P. Colli, G. Gilardi and J. Sprekels, A boundary control problem for the viscous Cahn–Hilliard equation with dynamic boundary conditions, Appl. Math. Optim., 73 (2016), 195-225. doi: 10.1007/s00245-015-9299-z. |
[25] | P. Constantin and M. Kliegl, Note on global regularity for two-dimensional Oldroyd-B fluids with diffusive stress, Arch. Ration. Mech. Anal., 206 (2012), 725-740. doi: 10.1007/s00205-012-0537-0. |
[26] | H. Damanik, FEM Simulation of Non-isothermal Viscoelastic Fluids, PhD thesis, Technischen Universität Dortmund, 2011. |
[27] | M. Doi, Dynamics of Domains and Textures, in Theoretical Challenges in the Dynamics of Complex Fluids, 1997, pp. 293-314. |
[28] | A. W. El-Kareh and L. G. Leal, Existence of solutions for all Deborah numbers for a non-Newtonian model modified to include diffusion, J. Non-Newton. Fluid Mech., 33 (1989), 257-287. doi: 10.1016/0377-0257(89)80002-3. |
[29] | H. Fakih, R. Mghames and N. Nasreddine, On the Cahn–Hilliard equation with mass source for biological applications, Commun. Pure Appl. Anal., 20 (2021), 495-510. doi: 10.3934/cpaa.2020277. |
[30] | S. Frigeri, C. G. Gal and M. Grasselli, et al., Two-dimensional nonlocal Cahn–Hilliard–Navier–Stokes systems with variable viscosity, degenerate mobility and singular potential, Nonlinearity, 32 (2019), 678-727. doi: 10.1088/1361-6544/aaedd0. |
[31] | S. Frigeri, M. Grasselli and J. Sprekels, Optimal distributed control of two-dimensional nonlocal Cahn–Hilliard–Navier–Stokes systems with degenerate mobility and singular potential, Appl. Math. Optim., 81 (2020), 899-931. doi: 10.1007/s00245-018-9524-7. |
[32] | S. Frigeri, E. Rocca and J. Sprekels, Optimal distributed control of a nonlocal Cahn–Hilliard/Navier–Stokes system in two dimensions, SIAM J. Control Optim., 54 (2016), 221-250. doi: 10.1137/140994800. |
[33] | C. G. Gal and M. Grasselli, Asymptotic behavior of a Cahn–Hilliard–Navier–Stokes system in 2D, Ann. I. H. Poincaré, 27 (2010), 401-436. doi: 10.1016/j.anihpc.2009.11.013. |
[34] | H. Garcke, B. Kovács and D. Trautwein, Viscoelastic Cahn–Hilliard models for tumor growth, Math. Models Methods Appl. Sci., 32 (2022), 2673-2758. doi: 10.1142/S0218202522500634. |
[35] | P. Germain, Cours de Mécanique des Milieux Continus, Tome 1, Théorie généraux, Masson, Berlin, 1973. |
[36] | M. E. Gurtin, Generalized Ginzburg–Landau and Cahn–Hilliard equations based on microforce balance, Physica D: Nonlinear Phenom., 92 (1996), 178-192. doi: 10.1016/0167-2789(95)00173-5. |
[37] | G. Gilardi and J. Sprekels, Asymptotic limits and optimal control for the Cahn–Hilliard system with convection and dynamic boundary conditions, Nonlinear Anal., 178 (2019), 1-31. doi: 10.1016/j.na.2018.07.007. |
[38] | D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Berlin, 2001. |
[39] | R. J. Gordon and W. R. Schowalter, Anisotropic fluid theory: A different approach to the dumbbell theory of dilute polymer solutions, Trans. Soc. Rheol., 16 (1972), 79-97. doi: 10.1122/1.549256. |
[40] | C. Guillopé and J. C. Saut, Existence results for the flow of viscoelastic fluids with a differential constitutive law, Nonlinear Anal. Theory Methods Appl., 15 (1990), 849-869. doi: 10.1016/0362-546X(90)90097-Z. |
[41] | M. E. Gurtin, D. Polignone and J. Viñals, Two-phase binary fluids and immiscible fluids described by an order parameter, Math. Models Methods Appl. Sci., 6 (1996), 815-831. doi: 10.1142/S0218202596000341. |
[42] | M. Hinze and K. Kunisch, Second order methods for optimal control of time-dependent fluid flow, SIAM J. Control Optim., 40 (2001), 925-946. doi: 10.1137/S0363012999361810. |
[43] | P. C. Hohenberg and B. I. Halperin, Theory of dynamical critical phenomena, Rev. Modern Phys., 49 (1977), 435-479. doi: 10.1103/RevModPhys.49.435. |
[44] | G. Jaumann, Geschlossenes System physikalischer und chemischer Differential Gesetze, Sitz. ber. Akad. Wiss. Wein (IIa), 120 (1911), 385-530. |
[45] | M. W. Johnson and D. Segalman, A model for viscoelastic fluid behavior which allows non-affine deformation, J. Non-Newton. Fluid Mech., 2 (1977), 255-270. doi: 10.1016/0377-0257(77)80003-7. |
[46] | D. D. Joseph, Stability of Fluid Motions II, Springer-Verlag, New York, 1976. |
[47] | Y. Kagei, M. Růžička and G. Thäter, Natural convection with dissipative heating, Commun. Math. Phys., 214 (2000), 287-313. doi: 10.1007/s002200000275. |
[48] | K. F. Lam and H. Wu, Thermodynamically consistent Navier–Stokes–Cahn–Hilliard models with mass transfer and chemotaxis, European J. Appl. Math., 29 (2018), 595-644. doi: 10.1017/S0956792517000298. |
[49] | P. L. Lions and N. Masmoudi, Global solutions for some Oldroyd models of non-Newtonian flows, Chin. Ann. Math., 21 (2000), 131-146. doi: 10.1142/S0252959900000170. |
[50] | J. Málek, V. Průša and T. Skřivan, et al., Thermodynamics of viscoelastic rate-type fluids with stress diffusion, Phys. Fluids, 30 (2018), 23 pp. doi: 10.1063/1.5018172. |
[51] | N. Masmoudi, Global existence of weak solutions to macroscopic models of polymeric flows, J. Math. Pures Appl., 96 (2011), 502-520. doi: 10.1016/j.matpur.2011.04.008. |
[52] | A. Miranville, The Cahn–Hilliard equation with a nonlinear source term, J. Differ. Equ., 294 (2021), 88-117. doi: 10.1016/j.jde.2021.05.045. |
[53] | H. Mohammadigoushki and S. J. Muller, A flow visualization and superposition rheology study of shear-banding wormlike micelle solutions, Soft Matter, 12 (2016), 1051-1061. doi: 10.1039/C5SM02266E. |
[54] | J. G. Oldroyd, On the formulation of rheological equations of state, Proc. R. Soc. Lond. A, 200 (1950), 523-541. doi: 10.1098/rspa.1950.0035. |
[55] | A. Onuki, Phase transitions of fluids in shear flow, J. Phys. Condens. Matter, 9 (1997), 6119-6157. doi: 10.1088/0953-8984/9/29/001. |
[56] | G. Peralta, Distributed optimal control of the 2D Cahn–Hilliard–Oberbeck–Boussinesq system for nonisothermal viscous two-phase flows, Appl. Math. Optim., 84 (Suppl 2) (2021), S1219-S1279. doi: 10.1007/s00245-021-09759-7. |
[57] | G. Peralta, Weak and very weak solutions to the viscous Cahn–Hilliard–Oberbeck–Boussinesq phase-field system on two-dimensional bounded domains, J. Evol. Equ., 22 (Article No. 12) (2022), 1-71. doi: 10.1007/s00028-022-00765-y. |
[58] | G. Peralta, Optimal Borel measure-valued controls to the viscous Cahn–Hilliard–Oberbeck–Boussinesq phase-field system on two-Dimensional bounded domains, ESAIM: Control Optim. Calc. Var., 29 (2023), 1-43. doi: 10.1051/cocv/2023025. |
[59] | N. Phan-Thien and R. I. Thanner, A new constitutive equation derived from network theory, J. Non-Newton. Fluid Mech., 2 (1977), 353-365. doi: 10.1016/0377-0257(77)80021-9. |
[60] | R. Rajagopal and A. R. Srinivasa, A thermodynamic frame work for rate type fluid models, J. Non-Newton. Fluid Mech., 88 (2000), 207-227. doi: 10.1016/S0377-0257(99)00023-3. |
[61] | T. Roubí$\breve{{\rm{c}}}$ek, From quasi-incompressible to semi-compressible fluids, Discrete Contin. Dyn. Syst.-S, 14 (2021), 4069-4092. doi: 10.3934/dcdss.2020414. |
[62] | T. Roubí$\breve{{\rm{c}}}$ek, Optimal control of flows of viscoelastic semi-compressible fluids, Pure Appl. Funct. Anal., 7 (2022), 1913-1928. |
[63] | J. L. Shomberg, Well-posedness and global attractors for a non-isothermal viscous relaxation of nonlocal Cahn–Hilliard equations, AIMS Math., 1 (2016), 102-136. doi: 10.3934/Math.2016.2.102. |
[64] | J. Simon, Compact sets in the space $L^p(0, T; B)$, Ann. di Mat. Pura ed Appl., 146 (1986), 65-96. doi: 10.1007/BF01762360. |
[65] | H. Sohr, The Navier–Stokes Equations: An Elementary Functional Analytic Approach, Birkhäuser, Berlin, 2001. |
[66] | F. Tröltzsch, Optimal Control of Partial Differential Equations: Theory, Methods and Applications, American Mathematical Society, Providence, 2010. |
[67] | C. Truesdell and K. R. Rajagopal, An Introduction to the Mechanics of Fluids, Birkhäuser, Boston, 2000. |
[68] | M. Tucsnak and G. Weiss, Observation and Control for Operator Semigroups, Birkhäuser-Verlag, Basel, 2009. |
[69] | D. Wachsmuth, Optimal Control of the Unsteady Navier-Stokes Equations, PhD thesis, Technischen Universität Berlin, 2006. |
[70] | Z. Ye, On the global regularity of the 2D Oldroyd-B-type model, Ann. Mate., 198 (2019), 465-489. doi: 10.1007/s10231-018-0784-2. |
[71] | S. Zaremba, Sur une forme perfectionée de la théorie de la relaxation, Bull. Int. Acad. Sci. Cracovie, (1903), 594-614. |
[72] | E. Zeidler, Nonlinear Functional Analysis and its Applications I: Fixed Point Theorems, Springer-Verlag, New York, 1986. |
[73] | E. Zeidler, Nonlinear Functional Analysis and its Applications II/A: Linear Monotone Operators, Springer-Verlag, New York, 1990. |