-
Previous Article
Diffusive epidemic models with spatial and age dependent heterogeneity
- DCDS Home
- This Issue
-
Next Article
Chain recurrence in surface flows
Controllability of systems of interconnected membranes
1. | Department of Mathematics, Georgetown Univesity, Washington, DC 20057, United States |
[1] |
Abdelaziz Bennour, Farid Ammar Khodja, Djamel Teniou. Exact and approximate controllability of coupled one-dimensional hyperbolic equations. Evolution Equations & Control Theory, 2017, 6 (4) : 487-516. doi: 10.3934/eect.2017025 |
[2] |
Tong Zhang, Yuxi Zheng. Exact spiral solutions of the two-dimensional Euler equations. Discrete & Continuous Dynamical Systems - A, 1997, 3 (1) : 117-133. doi: 10.3934/dcds.1997.3.117 |
[3] |
Zhaosheng Feng, Qingguo Meng. Exact solution for a two-dimensional KDV-Burgers-type equation with nonlinear terms of any order. Discrete & Continuous Dynamical Systems - B, 2007, 7 (2) : 285-291. doi: 10.3934/dcdsb.2007.7.285 |
[4] |
M. Eller, Roberto Triggiani. Exact/approximate controllability of thermoelastic plates with variable thermal coefficients. Discrete & Continuous Dynamical Systems - A, 2001, 7 (2) : 283-302. doi: 10.3934/dcds.2001.7.283 |
[5] |
Giovanni Alberti, Giuseppe Buttazzo, Serena Guarino Lo Bianco, Édouard Oudet. Optimal reinforcing networks for elastic membranes. Networks & Heterogeneous Media, 2019, 14 (3) : 589-615. doi: 10.3934/nhm.2019023 |
[6] |
Lars Lamberg, Lauri Ylinen. Two-Dimensional tomography with unknown view angles. Inverse Problems & Imaging, 2007, 1 (4) : 623-642. doi: 10.3934/ipi.2007.1.623 |
[7] |
Elissar Nasreddine. Two-dimensional individual clustering model. Discrete & Continuous Dynamical Systems - S, 2014, 7 (2) : 307-316. doi: 10.3934/dcdss.2014.7.307 |
[8] |
Jerzy Gawinecki, Wojciech M. Zajączkowski. Global regular solutions to two-dimensional thermoviscoelasticity. Communications on Pure & Applied Analysis, 2016, 15 (3) : 1009-1028. doi: 10.3934/cpaa.2016.15.1009 |
[9] |
Ibrahim Fatkullin, Valeriy Slastikov. Diffusive transport in two-dimensional nematics. Discrete & Continuous Dynamical Systems - S, 2015, 8 (2) : 323-340. doi: 10.3934/dcdss.2015.8.323 |
[10] |
Min Chen. Numerical investigation of a two-dimensional Boussinesq system. Discrete & Continuous Dynamical Systems - A, 2009, 23 (4) : 1169-1190. doi: 10.3934/dcds.2009.23.1169 |
[11] |
Abdelmouhcene Sengouga. Exact boundary observability and controllability of the wave equation in an interval with two moving endpoints. Evolution Equations & Control Theory, 2020, 9 (1) : 1-25. doi: 10.3934/eect.2020014 |
[12] |
Lianwen Wang. Approximate controllability and approximate null controllability of semilinear systems. Communications on Pure & Applied Analysis, 2006, 5 (4) : 953-962. doi: 10.3934/cpaa.2006.5.953 |
[13] |
Lihui Guo, Wancheng Sheng, Tong Zhang. The two-dimensional Riemann problem for isentropic Chaplygin gas dynamic system$^*$. Communications on Pure & Applied Analysis, 2010, 9 (2) : 431-458. doi: 10.3934/cpaa.2010.9.431 |
[14] |
Florian Kogelbauer. On the symmetry of spatially periodic two-dimensional water waves. Discrete & Continuous Dynamical Systems - A, 2016, 36 (12) : 7057-7061. doi: 10.3934/dcds.2016107 |
[15] |
Anke D. Pohl. Symbolic dynamics for the geodesic flow on two-dimensional hyperbolic good orbifolds. Discrete & Continuous Dynamical Systems - A, 2014, 34 (5) : 2173-2241. doi: 10.3934/dcds.2014.34.2173 |
[16] |
Muriel Boulakia, Anne-Claire Egloffe, Céline Grandmont. Stability estimates for a Robin coefficient in the two-dimensional Stokes system. Mathematical Control & Related Fields, 2013, 3 (1) : 21-49. doi: 10.3934/mcrf.2013.3.21 |
[17] |
Fang-Di Dong, Wan-Tong Li, Li Zhang. Entire solutions in a two-dimensional nonlocal lattice dynamical system. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2517-2545. doi: 10.3934/cpaa.2018120 |
[18] |
Qing Yi. On the Stokes approximation equations for two-dimensional compressible flows. Kinetic & Related Models, 2013, 6 (1) : 205-218. doi: 10.3934/krm.2013.6.205 |
[19] |
Marc Briane, David Manceau. Duality results in the homogenization of two-dimensional high-contrast conductivities. Networks & Heterogeneous Media, 2008, 3 (3) : 509-522. doi: 10.3934/nhm.2008.3.509 |
[20] |
Wen Deng. Resolvent estimates for a two-dimensional non-self-adjoint operator. Communications on Pure & Applied Analysis, 2013, 12 (1) : 547-596. doi: 10.3934/cpaa.2013.12.547 |
2018 Impact Factor: 1.143
Tools
Metrics
Other articles
by authors
[Back to Top]