-
Previous Article
A characterization of variational convergence for segmentation problems
- DCDS Home
- This Issue
- Next Article
Parabolic singular limit of a wave equation with localized boundary damping
1. | Departamento de Matemática Aplicada, Universidad Complutense de Madrid, Madrid 28040, Spain, Spain |
$\qquad\qquad \qquad\qquad \epsilon u_{t t} -\Delta u + \lambda u =f $ on $\Omega \times (0,T)$
$(P_{\epsilon, \lambda, \Gamma_0})\qquad\qquad u_t + \frac{\partial u}{\partial \vec{n}} =g$ on $\Gamma_1 \times (0,T) $
$\qquad\qquad u=0 $ on $\Gamma_0 \times (0,T)$
where $0< \epsilon \leq \epsilon_0$, $\Omega \subset \mathbb R^N$ is a
regular open connected set, $\lambda \geq 0$ and $\Gamma = \Gamma_0\cup \Gamma_1$ is a partition of the boundary of $\Omega$. We will
also consider the case where $\Gamma_0$ is empty (see below for
more precise assumptions on $\lambda$, $\Omega$ and $\Gamma_0$,
$\Gamma_1$).
For this problem the corresponding formal singular perturbation at
$\epsilon =0$ is
$\qquad\qquad \qquad\qquad -\Delta u + \lambda u =f$ on $\Omega \times (0,T) $
$(P_{0, \lambda, \Gamma_0}) \qquad\qquad u_t + \frac{\partial u}{\partial \vec{n}} =g$ on $\Gamma_1 \times (0,T) $
$\qquad\qquad u=0 $ on $ \Gamma_0 \times (0,T)$
We are here concerned with the well possedness of both problems for the non--homogeneous case, i.e. $f=f(t,x)$, $g=g(t,x)$, and with the convergence, as $\epsilon$ approaches $0$, of the solutions of $(P_{\epsilon, \lambda, \Gamma_0})$ to solutions of $(P_{0, \lambda, \Gamma_0})$.
[1] |
Nicolas Fourrier, Irena Lasiecka. Regularity and stability of a wave equation with a strong damping and dynamic boundary conditions. Evolution Equations and Control Theory, 2013, 2 (4) : 631-667. doi: 10.3934/eect.2013.2.631 |
[2] |
Tae Gab Ha. On viscoelastic wave equation with nonlinear boundary damping and source term. Communications on Pure and Applied Analysis, 2010, 9 (6) : 1543-1576. doi: 10.3934/cpaa.2010.9.1543 |
[3] |
Alhabib Moumni, Jawad Salhi. Exact controllability for a degenerate and singular wave equation with moving boundary. Numerical Algebra, Control and Optimization, 2022 doi: 10.3934/naco.2022001 |
[4] |
Enzo Vitillaro. Blow–up for the wave equation with hyperbolic dynamical boundary conditions, interior and boundary nonlinear damping and sources. Discrete and Continuous Dynamical Systems - S, 2021, 14 (12) : 4575-4608. doi: 10.3934/dcdss.2021130 |
[5] |
Mohammad Akil, Ibtissam Issa, Ali Wehbe. Energy decay of some boundary coupled systems involving wave\ Euler-Bernoulli beam with one locally singular fractional Kelvin-Voigt damping. Mathematical Control and Related Fields, 2021 doi: 10.3934/mcrf.2021059 |
[6] |
Serge Nicaise, Cristina Pignotti. Stability of the wave equation with localized Kelvin-Voigt damping and boundary delay feedback. Discrete and Continuous Dynamical Systems - S, 2016, 9 (3) : 791-813. doi: 10.3934/dcdss.2016029 |
[7] |
Belkacem Said-Houari, Flávio A. Falcão Nascimento. Global existence and nonexistence for the viscoelastic wave equation with nonlinear boundary damping-source interaction. Communications on Pure and Applied Analysis, 2013, 12 (1) : 375-403. doi: 10.3934/cpaa.2013.12.375 |
[8] |
Huafei Di, Yadong Shang, Jiali Yu. Existence and uniform decay estimates for the fourth order wave equation with nonlinear boundary damping and interior source. Electronic Research Archive, 2020, 28 (1) : 221-261. doi: 10.3934/era.2020015 |
[9] |
Wei Wang, Yan Lv. Limit behavior of nonlinear stochastic wave equations with singular perturbation. Discrete and Continuous Dynamical Systems - B, 2010, 13 (1) : 175-193. doi: 10.3934/dcdsb.2010.13.175 |
[10] |
Dalibor Pražák. On the dimension of the attractor for the wave equation with nonlinear damping. Communications on Pure and Applied Analysis, 2005, 4 (1) : 165-174. doi: 10.3934/cpaa.2005.4.165 |
[11] |
Biyue Chen, Chunxiang Zhao, Chengkui Zhong. The global attractor for the wave equation with nonlocal strong damping. Discrete and Continuous Dynamical Systems - B, 2021, 26 (12) : 6207-6228. doi: 10.3934/dcdsb.2021015 |
[12] |
Feifei Cheng, Ji Li. Geometric singular perturbation analysis of Degasperis-Procesi equation with distributed delay. Discrete and Continuous Dynamical Systems, 2021, 41 (2) : 967-985. doi: 10.3934/dcds.2020305 |
[13] |
Khadijah Sharaf. A perturbation result for a critical elliptic equation with zero Dirichlet boundary condition. Discrete and Continuous Dynamical Systems, 2017, 37 (3) : 1691-1706. doi: 10.3934/dcds.2017070 |
[14] |
Kim Dang Phung. Decay of solutions of the wave equation with localized nonlinear damping and trapped rays. Mathematical Control and Related Fields, 2011, 1 (2) : 251-265. doi: 10.3934/mcrf.2011.1.251 |
[15] |
Jiayun Lin, Kenji Nishihara, Jian Zhai. Critical exponent for the semilinear wave equation with time-dependent damping. Discrete and Continuous Dynamical Systems, 2012, 32 (12) : 4307-4320. doi: 10.3934/dcds.2012.32.4307 |
[16] |
Moez Daoulatli. Energy decay rates for solutions of the wave equation with linear damping in exterior domain. Evolution Equations and Control Theory, 2016, 5 (1) : 37-59. doi: 10.3934/eect.2016.5.37 |
[17] |
Mohammad A. Rammaha, Daniel Toundykov, Zahava Wilstein. Global existence and decay of energy for a nonlinear wave equation with $p$-Laplacian damping. Discrete and Continuous Dynamical Systems, 2012, 32 (12) : 4361-4390. doi: 10.3934/dcds.2012.32.4361 |
[18] |
Donghao Li, Hongwei Zhang, Shuo Liu, Qingiyng Hu. Blow-up of solutions to a viscoelastic wave equation with nonlocal damping. Evolution Equations and Control Theory, 2022 doi: 10.3934/eect.2022009 |
[19] |
Menglan Liao. The lifespan of solutions for a viscoelastic wave equation with a strong damping and logarithmic nonlinearity. Evolution Equations and Control Theory, 2022, 11 (3) : 781-792. doi: 10.3934/eect.2021025 |
[20] |
Navnit Jha. Nonpolynomial spline finite difference scheme for nonlinear singuiar boundary value problems with singular perturbation and its mechanization. Conference Publications, 2013, 2013 (special) : 355-363. doi: 10.3934/proc.2013.2013.355 |
2021 Impact Factor: 1.588
Tools
Metrics
Other articles
by authors
[Back to Top]