July  1995, 1(3): 347-369. doi: 10.3934/dcds.1995.1.347

A characterization of variational convergence for segmentation problems

1. 

Dipartimento di Matematica, Università di Pavia, 27100 Pavia, Italy

2. 

Dipartimento di Elettronica per l'Automazione, Università di Brescia, 25060 Brescia, Italy

Received  November 1994 Published  May 1995

We characterize the $\Gamma$-convergence of one-dimensional integral functionals with bulk and jump-part energies, by means of a suitable convergence of the integrands.
Citation: Micol Amar, Andrea Braides. A characterization of variational convergence for segmentation problems. Discrete & Continuous Dynamical Systems, 1995, 1 (3) : 347-369. doi: 10.3934/dcds.1995.1.347
[1]

Dominik Hafemeyer, Florian Mannel, Ira Neitzel, Boris Vexler. Finite element error estimates for one-dimensional elliptic optimal control by BV-functions. Mathematical Control & Related Fields, 2020, 10 (2) : 333-363. doi: 10.3934/mcrf.2019041

[2]

Stefano Bianchini, Daniela Tonon. A decomposition theorem for $BV$ functions. Communications on Pure & Applied Analysis, 2011, 10 (6) : 1549-1566. doi: 10.3934/cpaa.2011.10.1549

[3]

Julián Fernández Bonder, Analía Silva, Juan F. Spedaletti. Gamma convergence and asymptotic behavior for eigenvalues of nonlocal problems. Discrete & Continuous Dynamical Systems, 2021, 41 (5) : 2125-2140. doi: 10.3934/dcds.2020355

[4]

Gianni Dal Maso. Ennio De Giorgi and $\mathbf\Gamma$-convergence. Discrete & Continuous Dynamical Systems, 2011, 31 (4) : 1017-1021. doi: 10.3934/dcds.2011.31.1017

[5]

Alexander Mielke. Deriving amplitude equations via evolutionary $\Gamma$-convergence. Discrete & Continuous Dynamical Systems, 2015, 35 (6) : 2679-2700. doi: 10.3934/dcds.2015.35.2679

[6]

Kanghui Guo and Demetrio Labate. Sparse shearlet representation of Fourier integral operators. Electronic Research Announcements, 2007, 14: 7-19. doi: 10.3934/era.2007.14.7

[7]

Joshua Du, Jun Ji. An integral representation of the determinant of a matrix and its applications. Conference Publications, 2005, 2005 (Special) : 225-232. doi: 10.3934/proc.2005.2005.225

[8]

Gregory Beylkin, Lucas Monzón. Efficient representation and accurate evaluation of oscillatory integrals and functions. Discrete & Continuous Dynamical Systems, 2016, 36 (8) : 4077-4100. doi: 10.3934/dcds.2016.36.4077

[9]

Sylvia Serfaty. Gamma-convergence of gradient flows on Hilbert and metric spaces and applications. Discrete & Continuous Dynamical Systems, 2011, 31 (4) : 1427-1451. doi: 10.3934/dcds.2011.31.1427

[10]

Antonio De Rosa, Domenico Angelo La Manna. A non local approximation of the Gaussian perimeter: Gamma convergence and Isoperimetric properties. Communications on Pure & Applied Analysis, 2021, 20 (5) : 2101-2116. doi: 10.3934/cpaa.2021059

[11]

Lorenza D'Elia. $ \Gamma $-convergence of quadratic functionals with non uniformly elliptic conductivity matrices. Networks & Heterogeneous Media, 2021  doi: 10.3934/nhm.2021022

[12]

Corrado Mascia. Stability analysis for linear heat conduction with memory kernels described by Gamma functions. Discrete & Continuous Dynamical Systems, 2015, 35 (8) : 3569-3584. doi: 10.3934/dcds.2015.35.3569

[13]

Pavel Krejčí, Harbir Lamba, Sergey Melnik, Dmitrii Rachinskii. Kurzweil integral representation of interacting Prandtl-Ishlinskii operators. Discrete & Continuous Dynamical Systems - B, 2015, 20 (9) : 2949-2965. doi: 10.3934/dcdsb.2015.20.2949

[14]

Feng Qi, Bai-Ni Guo. Completely monotonic functions involving divided differences of the di- and tri-gamma functions and some applications. Communications on Pure & Applied Analysis, 2009, 8 (6) : 1975-1989. doi: 10.3934/cpaa.2009.8.1975

[15]

Jagannathan Gomatam, Isobel McFarlane. Generalisation of the Mandelbrot set to integral functions of quaternions. Discrete & Continuous Dynamical Systems, 1999, 5 (1) : 107-116. doi: 10.3934/dcds.1999.5.107

[16]

Davide Addona, Giorgio Menegatti, Michele Miranda jr.. $ BV $ functions on open domains: the Wiener case and a Fomin differentiable case. Communications on Pure & Applied Analysis, 2020, 19 (5) : 2679-2711. doi: 10.3934/cpaa.2020117

[17]

Katsukuni Nakagawa. Compactness of transfer operators and spectral representation of Ruelle zeta functions for super-continuous functions. Discrete & Continuous Dynamical Systems, 2020, 40 (11) : 6331-6350. doi: 10.3934/dcds.2020282

[18]

Jian Zhai, Zhihui Cai. $\Gamma$-convergence with Dirichlet boundary condition and Landau-Lifshitz functional for thin film. Discrete & Continuous Dynamical Systems - B, 2009, 11 (4) : 1071-1085. doi: 10.3934/dcdsb.2009.11.1071

[19]

Thomas Y. Hou, Pingwen Zhang. Convergence of a boundary integral method for 3-D water waves. Discrete & Continuous Dynamical Systems - B, 2002, 2 (1) : 1-34. doi: 10.3934/dcdsb.2002.2.1

[20]

Olaf Klein. On the representation of hysteresis operators acting on vector-valued, left-continuous and piecewise monotaffine and continuous functions. Discrete & Continuous Dynamical Systems, 2015, 35 (6) : 2591-2614. doi: 10.3934/dcds.2015.35.2591

2020 Impact Factor: 1.392

Metrics

  • PDF downloads (80)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]