January  1996, 2(1): 111-120. doi: 10.3934/dcds.1996.2.111

On chain continuity

1. 

Mathematics Department, The City College, New York, N. Y. 10031, United States

Received  May 1995 Published  October 1995

A number of recent papers examine for a dynamical system $f: X \rightarrow X$ the concept of equicontinuity at a point. A point $x \in X$ is an equicontinuity point for $f$ if for every $\epsilon > 0$ there is a $\delta > 0$ so that the orbit of initial points $\delta$ close to $x$ remains at all times $\epsilon$ close to the corresponding points of the orbit of $x$, i.e. $d(x,x_0) < \delta$ implies $d(f^i(x),f^i(x_0)) \leq \epsilon$ for $i = 1,2,\ldots$. If we suppose that the errors occur not only at the initial point but at each iterate we obtain not the orbit of $x_0$ but a $\delta$-chain, a sequence $\{x_0,x_1,x_2,\ldots\}$ such that $d(f(x_i),x_{i+1}) \leq \delta$ for $i = 0,1,\ldots$. The point $x$ is called a chain continuity point for $f$ if for every $\epsilon > 0$ there is a $\delta > 0$ so that all $\delta$ chains beginning $\delta$ close to $x$ remain $\epsilon$ close to the points of the orbit of $x$, i.e. $d(x,x_0) < \delta$ and $d(f(x_i),x_{i+1}) \leq \delta$ imply $d(f^i(x),x_i) \leq \epsilon$ for $i = 1,2,\ldots$. In this note we characterize this property of chain continuity. Despite the strength of this property, there is a class of systems $(X,f)$ for which the chain continuity points form a residual subset of the space $X$. For a manifold $X$ this class includes a residual subset of the space of homeomorphisms on $X$.
Citation: Ethan Akin. On chain continuity. Discrete & Continuous Dynamical Systems - A, 1996, 2 (1) : 111-120. doi: 10.3934/dcds.1996.2.111
[1]

Michel Benaim, Morris W. Hirsch. Chain recurrence in surface flows. Discrete & Continuous Dynamical Systems - A, 1995, 1 (1) : 1-16. doi: 10.3934/dcds.1995.1.1

[2]

Piotr Oprocha. Chain recurrence in multidimensional time discrete dynamical systems. Discrete & Continuous Dynamical Systems - A, 2008, 20 (4) : 1039-1056. doi: 10.3934/dcds.2008.20.1039

[3]

Bibhas C. Giri, Bhaba R. Sarker. Coordinating a multi-echelon supply chain under production disruption and price-sensitive stochastic demand. Journal of Industrial & Management Optimization, 2019, 15 (4) : 1631-1651. doi: 10.3934/jimo.2018115

[4]

Charalampos Evripidou, Pavlos Kassotakis, Pol Vanhaecke. Integrable reductions of the dressing chain. Journal of Computational Dynamics, 2019, 6 (2) : 277-306. doi: 10.3934/jcd.2019014

[5]

Samuel N. Cohen, Lukasz Szpruch. On Markovian solutions to Markov Chain BSDEs. Numerical Algebra, Control & Optimization, 2012, 2 (2) : 257-269. doi: 10.3934/naco.2012.2.257

[6]

Michael Herrmann, Antonio Segatti. Infinite harmonic chain with heavy mass. Communications on Pure & Applied Analysis, 2010, 9 (1) : 61-75. doi: 10.3934/cpaa.2010.9.61

[7]

Joshua E.S. Socolar. Discrete models of force chain networks. Discrete & Continuous Dynamical Systems - B, 2003, 3 (4) : 601-618. doi: 10.3934/dcdsb.2003.3.601

[8]

Michela Eleuteri, Paolo Marcellini, Elvira Mascolo. Local Lipschitz continuity of minimizers with mild assumptions on the $x$-dependence. Discrete & Continuous Dynamical Systems - S, 2019, 12 (2) : 251-265. doi: 10.3934/dcdss.2019018

[9]

Juliang Zhang, Jian Chen. Information sharing in a make-to-stock supply chain. Journal of Industrial & Management Optimization, 2014, 10 (4) : 1169-1189. doi: 10.3934/jimo.2014.10.1169

[10]

Michael Kastner, Jacques-Alexandre Sepulchre. Effective Hamiltonian for traveling discrete breathers in the FPU chain. Discrete & Continuous Dynamical Systems - B, 2005, 5 (3) : 719-734. doi: 10.3934/dcdsb.2005.5.719

[11]

S. R.-J. Jang, J. Baglama, P. Seshaiyer. Intratrophic predation in a simple food chain with fluctuating nutrient. Discrete & Continuous Dynamical Systems - B, 2005, 5 (2) : 335-352. doi: 10.3934/dcdsb.2005.5.335

[12]

Maria Paola Cassinari, Maria Groppi, Claudio Tebaldi. Effects of predation efficiencies on the dynamics of a tritrophic food chain. Mathematical Biosciences & Engineering, 2007, 4 (3) : 431-456. doi: 10.3934/mbe.2007.4.431

[13]

Yeong-Cheng Liou, Siegfried Schaible, Jen-Chih Yao. Supply chain inventory management via a Stackelberg equilibrium. Journal of Industrial & Management Optimization, 2006, 2 (1) : 81-94. doi: 10.3934/jimo.2006.2.81

[14]

Aicha Batoul, Kenza Guenda, T. Aaron Gulliver. Some constacyclic codes over finite chain rings. Advances in Mathematics of Communications, 2016, 10 (4) : 683-694. doi: 10.3934/amc.2016034

[15]

Somphong Jitman, San Ling, Patanee Udomkavanich. Skew constacyclic codes over finite chain rings. Advances in Mathematics of Communications, 2012, 6 (1) : 39-63. doi: 10.3934/amc.2012.6.39

[16]

Juliang Zhang. Coordination of supply chain with buyer's promotion. Journal of Industrial & Management Optimization, 2007, 3 (4) : 715-726. doi: 10.3934/jimo.2007.3.715

[17]

Wenxiang Sun, Yun Yang. Hyperbolic periodic points for chain hyperbolic homoclinic classes. Discrete & Continuous Dynamical Systems - A, 2016, 36 (7) : 3911-3925. doi: 10.3934/dcds.2016.36.3911

[18]

Mykola Matviichuk, Damoon Robatian. Chain transitive induced interval maps on continua. Discrete & Continuous Dynamical Systems - A, 2015, 35 (2) : 741-755. doi: 10.3934/dcds.2015.35.741

[19]

Na Song, Ximin Huang, Yue Xie, Wai-Ki Ching, Tak-Kuen Siu. Impact of reorder option in supply chain coordination. Journal of Industrial & Management Optimization, 2017, 13 (1) : 449-475. doi: 10.3934/jimo.2016026

[20]

Liping Zhang. A nonlinear complementarity model for supply chain network equilibrium. Journal of Industrial & Management Optimization, 2007, 3 (4) : 727-737. doi: 10.3934/jimo.2007.3.727

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (22)
  • HTML views (0)
  • Cited by (9)

Other articles
by authors

[Back to Top]