
Previous Article
Indestructibility of invariant locally nonunique manifolds
 DCDS Home
 This Issue

Next Article
On the critical decay and power for semilinear wave equtions in odd space dimensions
A free boundary problem arising from a stressdriven diffusion in polymers
1.  Department of Mathematics, University of Notre Dame, Notre Dame, IN 46556, United States 
[1] 
Tong Yang, Fahuai Yi. Global existence and uniqueness for a hyperbolic system with free boundary. Discrete & Continuous Dynamical Systems  A, 2001, 7 (4) : 763780. doi: 10.3934/dcds.2001.7.763 
[2] 
Mingxin Wang. Existence and uniqueness of solutions of free boundary problems in heterogeneous environments. Discrete & Continuous Dynamical Systems  B, 2019, 24 (2) : 415421. doi: 10.3934/dcdsb.2018179 
[3] 
Andrea L. Bertozzi, Dejan Slepcev. Existence and uniqueness of solutions to an aggregation equation with degenerate diffusion. Communications on Pure & Applied Analysis, 2010, 9 (6) : 16171637. doi: 10.3934/cpaa.2010.9.1617 
[4] 
Vicent Caselles. An existence and uniqueness result for flux limited diffusion equations. Discrete & Continuous Dynamical Systems  A, 2011, 31 (4) : 11511195. doi: 10.3934/dcds.2011.31.1151 
[5] 
Haomin Huang, Mingxin Wang. The reactiondiffusion system for an SIR epidemic model with a free boundary. Discrete & Continuous Dynamical Systems  B, 2015, 20 (7) : 20392050. doi: 10.3934/dcdsb.2015.20.2039 
[6] 
Jan Haškovec, Dietmar Oelz. A free boundary problem for aggregation by short range sensing and differentiated diffusion. Discrete & Continuous Dynamical Systems  B, 2015, 20 (5) : 14611480. doi: 10.3934/dcdsb.2015.20.1461 
[7] 
JiaFeng Cao, WanTong Li, Meng Zhao. On a free boundary problem for a nonlocal reactiondiffusion model. Discrete & Continuous Dynamical Systems  B, 2018, 23 (10) : 41174139. doi: 10.3934/dcdsb.2018128 
[8] 
Yizhuo Wang, Shangjiang Guo. A SIS reactiondiffusion model with a free boundary condition and nonhomogeneous coefficients. Discrete & Continuous Dynamical Systems  B, 2019, 24 (4) : 16271652. doi: 10.3934/dcdsb.2018223 
[9] 
Maho Endo, Yuki Kaneko, Yoshio Yamada. Free boundary problem for a reactiondiffusion equation with positive bistable nonlinearity. Discrete & Continuous Dynamical Systems  A, 2020, 40 (6) : 33753394. doi: 10.3934/dcds.2020033 
[10] 
Harunori Monobe, Hirokazu Ninomiya. Multiple existence of traveling waves of a free boundary problem describing cell motility. Discrete & Continuous Dynamical Systems  B, 2014, 19 (3) : 789799. doi: 10.3934/dcdsb.2014.19.789 
[11] 
Michael E. Filippakis, Nikolaos S. Papageorgiou. Existence and multiplicity of positive solutions for nonlinear boundary value problems driven by the scalar $p$Laplacian. Communications on Pure & Applied Analysis, 2004, 3 (4) : 729756. doi: 10.3934/cpaa.2004.3.729 
[12] 
Daoyi Xu, Weisong Zhou. Existenceuniqueness and exponential estimate of pathwise solutions of retarded stochastic evolution systems with time smooth diffusion coefficients. Discrete & Continuous Dynamical Systems  A, 2017, 37 (4) : 21612180. doi: 10.3934/dcds.2017093 
[13] 
Aníbal RodríguezBernal, Alejandro Vidal–López. Existence, uniqueness and attractivity properties of positive complete trajectories for nonautonomous reactiondiffusion problems. Discrete & Continuous Dynamical Systems  A, 2007, 18 (2&3) : 537567. doi: 10.3934/dcds.2007.18.537 
[14] 
Alexey Cheskidov, Songsong Lu. The existence and the structure of uniform global attractors for nonautonomous ReactionDiffusion systems without uniqueness. Discrete & Continuous Dynamical Systems  S, 2009, 2 (1) : 5566. doi: 10.3934/dcdss.2009.2.55 
[15] 
Karoline Disser. Global existence and uniqueness for a volumesurface reactionnonlineardiffusion system. Discrete & Continuous Dynamical Systems  S, 2020 doi: 10.3934/dcdss.2020326 
[16] 
Jorge GarcíaMelián, Julio D. Rossi, José C. Sabina de Lis. Elliptic systems with boundary blowup: existence, uniqueness and applications to removability of singularities. Communications on Pure & Applied Analysis, 2016, 15 (2) : 549562. doi: 10.3934/cpaa.2016.15.549 
[17] 
Claudia Negulescu, Anne Nouri, Philippe Ghendrih, Yanick Sarazin. Existence and uniqueness of the electric potential profile in the edge of tokamak plasmas when constrained by the plasmawall boundary physics. Kinetic & Related Models, 2008, 1 (4) : 619639. doi: 10.3934/krm.2008.1.619 
[18] 
Siyu Liu, Haomin Huang, Mingxin Wang. A free boundary problem for a preypredator model with degenerate diffusion and predatorstage structure. Discrete & Continuous Dynamical Systems  B, 2020, 25 (5) : 16491670. doi: 10.3934/dcdsb.2019245 
[19] 
Toyohiko Aiki. On the existence of a weak solution to a free boundary problem for a model of a shape memory alloy spring. Discrete & Continuous Dynamical Systems  S, 2012, 5 (1) : 113. doi: 10.3934/dcdss.2012.5.1 
[20] 
Zhenhua Guo, Zilai Li. Global existence of weak solution to the free boundary problem for compressible NavierStokes. Kinetic & Related Models, 2016, 9 (1) : 75103. doi: 10.3934/krm.2016.9.75 
2019 Impact Factor: 1.338
Tools
Metrics
Other articles
by authors
[Back to Top]