October  1996, 2(4): 543-558. doi: 10.3934/dcds.1996.2.543

Some new generalizations of inertial manifolds

1. 

Laboratoire d'Analyse Numérique et EDP, Unité de Recherche Associée 760, Université de Paris-Sud, Bâtiment 425, 91405 Orsay Cedex, France, France

Received  July 1996 Published  July 1996

In this article we introduce two new generalizations of inertial manifolds. The first one is the concept of Inertial Manifold with Delay which may be physically more suitable than the usual concept of inertial manifold since it allows a certain delay time for the adjustment of the small scales to the large ones. We also introduce an invariant manifold which is the graph of a multivalued function and which exists under general conditions. We conjecture that, like an inertial manifold, this manifold attracts all orbits at an exponential rate.
Citation: A. Debussche, R. Temam. Some new generalizations of inertial manifolds. Discrete and Continuous Dynamical Systems, 1996, 2 (4) : 543-558. doi: 10.3934/dcds.1996.2.543
[1]

James C. Robinson. Computing inertial manifolds. Discrete and Continuous Dynamical Systems, 2002, 8 (4) : 815-833. doi: 10.3934/dcds.2002.8.815

[2]

José M. Arrieta, Esperanza Santamaría. Estimates on the distance of inertial manifolds. Discrete and Continuous Dynamical Systems, 2014, 34 (10) : 3921-3944. doi: 10.3934/dcds.2014.34.3921

[3]

James C. Robinson. Inertial manifolds with and without delay. Discrete and Continuous Dynamical Systems, 1999, 5 (4) : 813-824. doi: 10.3934/dcds.1999.5.813

[4]

Ricardo Rosa. Approximate inertial manifolds of exponential order. Discrete and Continuous Dynamical Systems, 1995, 1 (3) : 421-448. doi: 10.3934/dcds.1995.1.421

[5]

Rovella Alvaro, Vilamajó Francesc, Romero Neptalí. Invariant manifolds for delay endomorphisms. Discrete and Continuous Dynamical Systems, 2001, 7 (1) : 35-50. doi: 10.3934/dcds.2001.7.35

[6]

George Osipenko. Linearization near a locally nonunique invariant manifold. Discrete and Continuous Dynamical Systems, 1997, 3 (2) : 189-205. doi: 10.3934/dcds.1997.3.189

[7]

A. V. Rezounenko. Inertial manifolds with delay for retarded semilinear parabolic equations. Discrete and Continuous Dynamical Systems, 2000, 6 (4) : 829-840. doi: 10.3934/dcds.2000.6.829

[8]

Peter Brune, Björn Schmalfuss. Inertial manifolds for stochastic pde with dynamical boundary conditions. Communications on Pure and Applied Analysis, 2011, 10 (3) : 831-846. doi: 10.3934/cpaa.2011.10.831

[9]

Vladimir V. Chepyzhov, Anna Kostianko, Sergey Zelik. Inertial manifolds for the hyperbolic relaxation of semilinear parabolic equations. Discrete and Continuous Dynamical Systems - B, 2019, 24 (3) : 1115-1142. doi: 10.3934/dcdsb.2019009

[10]

Changbing Hu, Kaitai Li. A simple construction of inertial manifolds under time discretization. Discrete and Continuous Dynamical Systems, 1997, 3 (4) : 531-540. doi: 10.3934/dcds.1997.3.531

[11]

Y. Latushkin, B. Layton. The optimal gap condition for invariant manifolds. Discrete and Continuous Dynamical Systems, 1999, 5 (2) : 233-268. doi: 10.3934/dcds.1999.5.233

[12]

Rolf Bronstering. Some computational aspects of approximate inertial manifolds and finite differences. Discrete and Continuous Dynamical Systems, 1996, 2 (4) : 417-454. doi: 10.3934/dcds.1996.2.417

[13]

Norbert Koksch, Stefan Siegmund. Feedback control via inertial manifolds for nonautonomous evolution equations. Communications on Pure and Applied Analysis, 2011, 10 (3) : 917-936. doi: 10.3934/cpaa.2011.10.917

[14]

L. Dieci, M. S Jolly, Ricardo Rosa, E. S. Van Vleck. Error in approximation of Lyapunov exponents on inertial manifolds: The Kuramoto-Sivashinsky equation. Discrete and Continuous Dynamical Systems - B, 2008, 9 (3&4, May) : 555-580. doi: 10.3934/dcdsb.2008.9.555

[15]

Ahmed Bonfoh. Sufficient conditions for the continuity of inertial manifolds for singularly perturbed problems. Evolution Equations and Control Theory, 2021  doi: 10.3934/eect.2021049

[16]

Nguyen Thieu Huy, Pham Truong Xuan, Vu Thi Ngoc Ha, Vu Thi Thuy Ha. Inertial manifolds for parabolic differential equations: The fully nonautonomous case. Communications on Pure and Applied Analysis, 2022, 21 (3) : 943-958. doi: 10.3934/cpaa.2022005

[17]

José F. Alves, Davide Azevedo. Statistical properties of diffeomorphisms with weak invariant manifolds. Discrete and Continuous Dynamical Systems, 2016, 36 (1) : 1-41. doi: 10.3934/dcds.2016.36.1

[18]

George Osipenko. Indestructibility of invariant locally non-unique manifolds. Discrete and Continuous Dynamical Systems, 1996, 2 (2) : 203-219. doi: 10.3934/dcds.1996.2.203

[19]

Henk Broer, Aaron Hagen, Gert Vegter. Numerical approximation of normally hyperbolic invariant manifolds. Conference Publications, 2003, 2003 (Special) : 133-140. doi: 10.3934/proc.2003.2003.133

[20]

Christopher K. R. T. Jones, Siu-Kei Tin. Generalized exchange lemmas and orbits heteroclinic to invariant manifolds. Discrete and Continuous Dynamical Systems - S, 2009, 2 (4) : 967-1023. doi: 10.3934/dcdss.2009.2.967

2020 Impact Factor: 1.392

Metrics

  • PDF downloads (114)
  • HTML views (0)
  • Cited by (13)

Other articles
by authors

[Back to Top]