April  1997, 3(2): 153-174. doi: 10.3934/dcds.1997.3.153

Minimizing movements of the Mumford and Shah energy

1. 

CEREMADE (CNRS URA 749), Université de Paris-Dauphine, 75775 Paris CEDEX 16, France

2. 

SISSA, Via Beirut 2-4, 34013 Trieste, Italy

Received  October 1996 Published  January 1997

We study a simplified model of fracture propagation introduced by L. Ambrosio and A. Braides, based on the evolution by minimizing movements of the Mumford-Shah energy. In the two-dimensional case, we show that under a few additional assumptions on the "fracture" the movement solves the heat equation, with (weak) Neumann boundary conditions, and we are able to give some estimate on the decrease of the Mumford-Shah energy.
Citation: Antonin Chambolle, Francesco Doveri. Minimizing movements of the Mumford and Shah energy. Discrete & Continuous Dynamical Systems - A, 1997, 3 (2) : 153-174. doi: 10.3934/dcds.1997.3.153
[1]

Li Shen, Eric Todd Quinto, Shiqiang Wang, Ming Jiang. Simultaneous reconstruction and segmentation with the Mumford-Shah functional for electron tomography. Inverse Problems & Imaging, 2018, 12 (6) : 1343-1364. doi: 10.3934/ipi.2018056

[2]

Esther Klann, Ronny Ramlau, Wolfgang Ring. A Mumford-Shah level-set approach for the inversion and segmentation of SPECT/CT data. Inverse Problems & Imaging, 2011, 5 (1) : 137-166. doi: 10.3934/ipi.2011.5.137

[3]

Guy V. Norton, Robert D. Purrington. The Westervelt equation with a causal propagation operator coupled to the bioheat equation.. Evolution Equations & Control Theory, 2016, 5 (3) : 449-461. doi: 10.3934/eect.2016013

[4]

Tomáš Roubíček. An energy-conserving time-discretisation scheme for poroelastic media with phase-field fracture emitting waves and heat. Discrete & Continuous Dynamical Systems - S, 2017, 10 (4) : 867-893. doi: 10.3934/dcdss.2017044

[5]

Giovanna Citti, Maria Manfredini, Alessandro Sarti. Finite difference approximation of the Mumford and Shah functional in a contact manifold of the Heisenberg space. Communications on Pure & Applied Analysis, 2010, 9 (4) : 905-927. doi: 10.3934/cpaa.2010.9.905

[6]

Zhenhua Zhao, Yining Zhu, Jiansheng Yang, Ming Jiang. Mumford-Shah-TV functional with application in X-ray interior tomography. Inverse Problems & Imaging, 2018, 12 (2) : 331-348. doi: 10.3934/ipi.2018015

[7]

Andrey Shishkov, Laurent Véron. Propagation of singularities of nonlinear heat flow in fissured media. Communications on Pure & Applied Analysis, 2013, 12 (4) : 1769-1782. doi: 10.3934/cpaa.2013.12.1769

[8]

Thierry Horsin, Peter I. Kogut, Olivier Wilk. Optimal $L^2$-control problem in coefficients for a linear elliptic equation. II. Approximation of solutions and optimality conditions. Mathematical Control & Related Fields, 2016, 6 (4) : 595-628. doi: 10.3934/mcrf.2016017

[9]

Sebastián Ferrer, Martin Lara. Families of canonical transformations by Hamilton-Jacobi-Poincaré equation. Application to rotational and orbital motion. Journal of Geometric Mechanics, 2010, 2 (3) : 223-241. doi: 10.3934/jgm.2010.2.223

[10]

Manuel de León, Juan Carlos Marrero, David Martín de Diego. Linear almost Poisson structures and Hamilton-Jacobi equation. Applications to nonholonomic mechanics. Journal of Geometric Mechanics, 2010, 2 (2) : 159-198. doi: 10.3934/jgm.2010.2.159

[11]

Thierry Horsin, Peter I. Kogut. Optimal $L^2$-control problem in coefficients for a linear elliptic equation. I. Existence result. Mathematical Control & Related Fields, 2015, 5 (1) : 73-96. doi: 10.3934/mcrf.2015.5.73

[12]

Yulong Xing, Ching-Shan Chou, Chi-Wang Shu. Energy conserving local discontinuous Galerkin methods for wave propagation problems. Inverse Problems & Imaging, 2013, 7 (3) : 967-986. doi: 10.3934/ipi.2013.7.967

[13]

Yong Zhou, Zhengguang Guo. Blow up and propagation speed of solutions to the DGH equation. Discrete & Continuous Dynamical Systems - B, 2009, 12 (3) : 657-670. doi: 10.3934/dcdsb.2009.12.657

[14]

Tzong-Yow Lee and Fred Torcaso. Wave propagation in a lattice KPP equation in random media. Electronic Research Announcements, 1997, 3: 121-125.

[15]

C. Brändle, E. Chasseigne, Raúl Ferreira. Unbounded solutions of the nonlocal heat equation. Communications on Pure & Applied Analysis, 2011, 10 (6) : 1663-1686. doi: 10.3934/cpaa.2011.10.1663

[16]

Arthur Ramiandrisoa. Nonlinear heat equation: the radial case. Discrete & Continuous Dynamical Systems - A, 1999, 5 (4) : 849-870. doi: 10.3934/dcds.1999.5.849

[17]

Delio Mugnolo. Gaussian estimates for a heat equation on a network. Networks & Heterogeneous Media, 2007, 2 (1) : 55-79. doi: 10.3934/nhm.2007.2.55

[18]

Sergei A. Avdonin, Sergei A. Ivanov, Jun-Min Wang. Inverse problems for the heat equation with memory. Inverse Problems & Imaging, 2019, 13 (1) : 31-38. doi: 10.3934/ipi.2019002

[19]

Luis Caffarelli, Fanghua Lin. Nonlocal heat flows preserving the L2 energy. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 49-64. doi: 10.3934/dcds.2009.23.49

[20]

Giovambattista Amendola, Mauro Fabrizio, John Murrough Golden. Minimum free energy in the frequency domain for a heat conductor with memory. Discrete & Continuous Dynamical Systems - B, 2010, 14 (3) : 793-816. doi: 10.3934/dcdsb.2010.14.793

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (11)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]