Advanced Search
Article Contents
Article Contents

Coincidence of various dimensions associated with metrics and measures on metric spaces

Abstract Related Papers Cited by
  • We establish coincidence of major types of dimensions for a broad class of separable metric spaces with finite borel measures. To do this we introduce a new type of separable metric spaces, so called tight spaces, for which these dimensions coincide naturally. This class includes, for example, all manifolds of the curvature bounded from below and any their subsets with induced metric. In particular, we prove that Hentshel-Procaccia and Renyi spectra for dimensions are equal in tight spaces for any measure. We also give the examples that demonstrate that all known dimensions can differ for bad enough metric spaces.
    Mathematics Subject Classification: 58F15, 28D20.


    \begin{equation} \\ \end{equation}
  • 加载中

Article Metrics

HTML views() PDF downloads(81) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint