    January  1998, 4(1): 131-140. doi: 10.3934/dcds.1998.4.131

## A general approach to stability and sensitivity in dynamical systems

 1 Department of Mathematics & Statistics, Central University Campus, University of Hyderabad, Hyderabad -500 046, India, India

Received  March 1997 Revised  August 1997 Published  October 1997

Suppose $(X,d)$ is a metric space and $f:X\to X$ a continuous map. Let $\sum = X^{\N}$ denote the set of all sequences of elements of $X$. $E_f: X\to\sum$ is given by $E_f(x) = (x,f(x),f^2(x),\ldots).$ $E_f(x)$ is called the trajectory or time evolution of $f$ at $x$. Let $\mathcal T$ be a toplogy on $\sum$. We define $f$ to be $\mathcal T$-stable ($\mathcal T$-sensitive) at $x$ if $E_f$ is $\mathcal T$-continuous at $x$ (if $E_f$ is $\mathcal T$-discontinuous at $x$). We construct topologies on $\sum$ by using a generalised notion of a metric on $\sum$ which we call a sensitivity function. We show that the classical notions of stability due to Liapunov, Birkhoff, Lefschetz and Poisson can be expressed in terms of suitably chosen sensitivity functions. This approach unifies old ideas and suggests new notions of sensitivity all stronger than that due to Liapunov. The mutual implications of these various notions are discussed in detail. Throughout, the analysis is in terms of elementary topology.
Citation: S.Durga Bhavani, K. Viswanath. A general approach to stability and sensitivity in dynamical systems. Discrete & Continuous Dynamical Systems - A, 1998, 4 (1) : 131-140. doi: 10.3934/dcds.1998.4.131
  H.T. Banks, S. Dediu, H.K. Nguyen. Sensitivity of dynamical systems to parameters in a convex subset of a topological vector space. Mathematical Biosciences & Engineering, 2007, 4 (3) : 403-430. doi: 10.3934/mbe.2007.4.403  Karl P. Hadeler. Quiescent phases and stability in discrete time dynamical systems. Discrete & Continuous Dynamical Systems - B, 2015, 20 (1) : 129-152. doi: 10.3934/dcdsb.2015.20.129  Matthew Macauley, Henning S. Mortveit. Update sequence stability in graph dynamical systems. Discrete & Continuous Dynamical Systems - S, 2011, 4 (6) : 1533-1541. doi: 10.3934/dcdss.2011.4.1533  Henri Schurz. Moment attractivity, stability and contractivity exponents of stochastic dynamical systems. Discrete & Continuous Dynamical Systems - A, 2001, 7 (3) : 487-515. doi: 10.3934/dcds.2001.7.487  Michael Schönlein. Asymptotic stability and smooth Lyapunov functions for a class of abstract dynamical systems. Discrete & Continuous Dynamical Systems - A, 2017, 37 (7) : 4053-4069. doi: 10.3934/dcds.2017172  J. Gwinner. On differential variational inequalities and projected dynamical systems - equivalence and a stability result. Conference Publications, 2007, 2007 (Special) : 467-476. doi: 10.3934/proc.2007.2007.467  Alexandra Rodkina, Henri Schurz, Leonid Shaikhet. Almost sure stability of some stochastic dynamical systems with memory. Discrete & Continuous Dynamical Systems - A, 2008, 21 (2) : 571-593. doi: 10.3934/dcds.2008.21.571  Noriaki Kawaguchi. Topological stability and shadowing of zero-dimensional dynamical systems. Discrete & Continuous Dynamical Systems - A, 2019, 39 (5) : 2743-2761. doi: 10.3934/dcds.2019115  Daniel Franco, Juan Perán, Juan Segura. Stability for one-dimensional discrete dynamical systems revisited. Discrete & Continuous Dynamical Systems - B, 2020, 25 (2) : 635-650. doi: 10.3934/dcdsb.2019258  Uwe Helmke, Michael Schönlein. Minimum sensitivity realizations of networks of linear systems. Numerical Algebra, Control & Optimization, 2016, 6 (3) : 241-262. doi: 10.3934/naco.2016010  Ken Shirakawa. Asymptotic stability for dynamical systems associated with the one-dimensional Frémond model of shape memory alloys. Conference Publications, 2003, 2003 (Special) : 798-808. doi: 10.3934/proc.2003.2003.798  El Houcein El Abdalaoui, Sylvain Bonnot, Ali Messaoudi, Olivier Sester. On the Fibonacci complex dynamical systems. Discrete & Continuous Dynamical Systems - A, 2016, 36 (5) : 2449-2471. doi: 10.3934/dcds.2016.36.2449  Lianfa He, Hongwen Zheng, Yujun Zhu. Shadowing in random dynamical systems. Discrete & Continuous Dynamical Systems - A, 2005, 12 (2) : 355-362. doi: 10.3934/dcds.2005.12.355  Fritz Colonius, Marco Spadini. Fundamental semigroups for dynamical systems. Discrete & Continuous Dynamical Systems - A, 2006, 14 (3) : 447-463. doi: 10.3934/dcds.2006.14.447  John Erik Fornæss. Sustainable dynamical systems. Discrete & Continuous Dynamical Systems - A, 2003, 9 (6) : 1361-1386. doi: 10.3934/dcds.2003.9.1361  Vieri Benci, C. Bonanno, Stefano Galatolo, G. Menconi, M. Virgilio. Dynamical systems and computable information. Discrete & Continuous Dynamical Systems - B, 2004, 4 (4) : 935-960. doi: 10.3934/dcdsb.2004.4.935  Mădălina Roxana Buneci. Morphisms of discrete dynamical systems. Discrete & Continuous Dynamical Systems - A, 2011, 29 (1) : 91-107. doi: 10.3934/dcds.2011.29.91  Philippe Marie, Jérôme Rousseau. Recurrence for random dynamical systems. Discrete & Continuous Dynamical Systems - A, 2011, 30 (1) : 1-16. doi: 10.3934/dcds.2011.30.1  Tobias Wichtrey. Harmonic limits of dynamical systems. Conference Publications, 2011, 2011 (Special) : 1432-1439. doi: 10.3934/proc.2011.2011.1432  Josiney A. Souza, Tiago A. Pacifico, Hélio V. M. Tozatti. A note on parallelizable dynamical systems. Electronic Research Announcements, 2017, 24: 64-67. doi: 10.3934/era.2017.24.007

2018 Impact Factor: 1.143