# American Institute of Mathematical Sciences

January  1998, 4(1): 131-140. doi: 10.3934/dcds.1998.4.131

## A general approach to stability and sensitivity in dynamical systems

 1 Department of Mathematics & Statistics, Central University Campus, University of Hyderabad, Hyderabad -500 046, India, India

Received  March 1997 Revised  August 1997 Published  October 1997

Suppose $(X,d)$ is a metric space and $f:X\to X$ a continuous map. Let $\sum = X^{\N}$ denote the set of all sequences of elements of $X$. $E_f: X\to\sum$ is given by $E_f(x) = (x,f(x),f^2(x),\ldots).$ $E_f(x)$ is called the trajectory or time evolution of $f$ at $x$. Let $\mathcal T$ be a toplogy on $\sum$. We define $f$ to be $\mathcal T$-stable ($\mathcal T$-sensitive) at $x$ if $E_f$ is $\mathcal T$-continuous at $x$ (if $E_f$ is $\mathcal T$-discontinuous at $x$). We construct topologies on $\sum$ by using a generalised notion of a metric on $\sum$ which we call a sensitivity function. We show that the classical notions of stability due to Liapunov, Birkhoff, Lefschetz and Poisson can be expressed in terms of suitably chosen sensitivity functions. This approach unifies old ideas and suggests new notions of sensitivity all stronger than that due to Liapunov. The mutual implications of these various notions are discussed in detail. Throughout, the analysis is in terms of elementary topology.
Citation: S.Durga Bhavani, K. Viswanath. A general approach to stability and sensitivity in dynamical systems. Discrete and Continuous Dynamical Systems, 1998, 4 (1) : 131-140. doi: 10.3934/dcds.1998.4.131
 [1] H.T. Banks, S. Dediu, H.K. Nguyen. Sensitivity of dynamical systems to parameters in a convex subset of a topological vector space. Mathematical Biosciences & Engineering, 2007, 4 (3) : 403-430. doi: 10.3934/mbe.2007.4.403 [2] Karl P. Hadeler. Quiescent phases and stability in discrete time dynamical systems. Discrete and Continuous Dynamical Systems - B, 2015, 20 (1) : 129-152. doi: 10.3934/dcdsb.2015.20.129 [3] Matthew Macauley, Henning S. Mortveit. Update sequence stability in graph dynamical systems. Discrete and Continuous Dynamical Systems - S, 2011, 4 (6) : 1533-1541. doi: 10.3934/dcdss.2011.4.1533 [4] Henri Schurz. Moment attractivity, stability and contractivity exponents of stochastic dynamical systems. Discrete and Continuous Dynamical Systems, 2001, 7 (3) : 487-515. doi: 10.3934/dcds.2001.7.487 [5] Michael Schönlein. Asymptotic stability and smooth Lyapunov functions for a class of abstract dynamical systems. Discrete and Continuous Dynamical Systems, 2017, 37 (7) : 4053-4069. doi: 10.3934/dcds.2017172 [6] J. Gwinner. On differential variational inequalities and projected dynamical systems - equivalence and a stability result. Conference Publications, 2007, 2007 (Special) : 467-476. doi: 10.3934/proc.2007.2007.467 [7] Noriaki Kawaguchi. Topological stability and shadowing of zero-dimensional dynamical systems. Discrete and Continuous Dynamical Systems, 2019, 39 (5) : 2743-2761. doi: 10.3934/dcds.2019115 [8] Alexandra Rodkina, Henri Schurz, Leonid Shaikhet. Almost sure stability of some stochastic dynamical systems with memory. Discrete and Continuous Dynamical Systems, 2008, 21 (2) : 571-593. doi: 10.3934/dcds.2008.21.571 [9] Daniel Franco, Juan Perán, Juan Segura. Stability for one-dimensional discrete dynamical systems revisited. Discrete and Continuous Dynamical Systems - B, 2020, 25 (2) : 635-650. doi: 10.3934/dcdsb.2019258 [10] Giovanni Russo, Fabian Wirth. Matrix measures, stability and contraction theory for dynamical systems on time scales. Discrete and Continuous Dynamical Systems - B, 2022, 27 (6) : 3345-3374. doi: 10.3934/dcdsb.2021188 [11] Uwe Helmke, Michael Schönlein. Minimum sensitivity realizations of networks of linear systems. Numerical Algebra, Control and Optimization, 2016, 6 (3) : 241-262. doi: 10.3934/naco.2016010 [12] Ken Shirakawa. Asymptotic stability for dynamical systems associated with the one-dimensional Frémond model of shape memory alloys. Conference Publications, 2003, 2003 (Special) : 798-808. doi: 10.3934/proc.2003.2003.798 [13] Radosław Czaja. Pullback attractors via quasi-stability for non-autonomous lattice dynamical systems. Discrete and Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021276 [14] Wei Wang, Kai Liu, Xiulian Wang. Sensitivity to small delays of mean square stability for stochastic neutral evolution equations. Communications on Pure and Applied Analysis, 2020, 19 (4) : 2403-2418. doi: 10.3934/cpaa.2020105 [15] El Houcein El Abdalaoui, Sylvain Bonnot, Ali Messaoudi, Olivier Sester. On the Fibonacci complex dynamical systems. Discrete and Continuous Dynamical Systems, 2016, 36 (5) : 2449-2471. doi: 10.3934/dcds.2016.36.2449 [16] Lianfa He, Hongwen Zheng, Yujun Zhu. Shadowing in random dynamical systems. Discrete and Continuous Dynamical Systems, 2005, 12 (2) : 355-362. doi: 10.3934/dcds.2005.12.355 [17] Mauricio Achigar. Extensions of expansive dynamical systems. Discrete and Continuous Dynamical Systems, 2021, 41 (7) : 3093-3108. doi: 10.3934/dcds.2020399 [18] Fritz Colonius, Marco Spadini. Fundamental semigroups for dynamical systems. Discrete and Continuous Dynamical Systems, 2006, 14 (3) : 447-463. doi: 10.3934/dcds.2006.14.447 [19] John Erik Fornæss. Sustainable dynamical systems. Discrete and Continuous Dynamical Systems, 2003, 9 (6) : 1361-1386. doi: 10.3934/dcds.2003.9.1361 [20] Vieri Benci, C. Bonanno, Stefano Galatolo, G. Menconi, M. Virgilio. Dynamical systems and computable information. Discrete and Continuous Dynamical Systems - B, 2004, 4 (4) : 935-960. doi: 10.3934/dcdsb.2004.4.935

2020 Impact Factor: 1.392

## Metrics

• HTML views (0)
• Cited by (0)

• on AIMS