-
Previous Article
Some properties of ergodic attractors for controlled dynamical systems
- DCDS Home
- This Issue
-
Next Article
Vacuum states for compressible flow
Singular continuous spectrum and quantitative rates of weak mixing
1. | Division of Physics, Mathematics and Astronomy, California Institute of Technology, Pasadena, CA 91125, United States |
[1] |
Barry Simon. Equilibrium measures and capacities in spectral theory. Inverse Problems and Imaging, 2007, 1 (4) : 713-772. doi: 10.3934/ipi.2007.1.713 |
[2] |
Xiongping Dai, Yu Huang, Mingqing Xiao. Realization of joint spectral radius via Ergodic theory. Electronic Research Announcements, 2011, 18: 22-30. doi: 10.3934/era.2011.18.22 |
[3] |
Ryszard Rudnicki. An ergodic theory approach to chaos. Discrete and Continuous Dynamical Systems, 2015, 35 (2) : 757-770. doi: 10.3934/dcds.2015.35.757 |
[4] |
Thierry de la Rue. An introduction to joinings in ergodic theory. Discrete and Continuous Dynamical Systems, 2006, 15 (1) : 121-142. doi: 10.3934/dcds.2006.15.121 |
[5] |
Steffen Klassert, Daniel Lenz, Peter Stollmann. Delone measures of finite local complexity and applications to spectral theory of one-dimensional continuum models of quasicrystals. Discrete and Continuous Dynamical Systems, 2011, 29 (4) : 1553-1571. doi: 10.3934/dcds.2011.29.1553 |
[6] |
Rémi Leclercq. Spectral invariants in Lagrangian Floer theory. Journal of Modern Dynamics, 2008, 2 (2) : 249-286. doi: 10.3934/jmd.2008.2.249 |
[7] |
Cristina Lizana, Vilton Pinheiro, Paulo Varandas. Contribution to the ergodic theory of robustly transitive maps. Discrete and Continuous Dynamical Systems, 2015, 35 (1) : 353-365. doi: 10.3934/dcds.2015.35.353 |
[8] |
Mazyar Ghani Varzaneh, Sebastian Riedel. A dynamical theory for singular stochastic delay differential equations Ⅱ: nonlinear equations and invariant manifolds. Discrete and Continuous Dynamical Systems - B, 2021, 26 (8) : 4587-4612. doi: 10.3934/dcdsb.2020304 |
[9] |
Manfred Deistler. Singular arma systems: A structure theory. Numerical Algebra, Control and Optimization, 2019, 9 (3) : 383-391. doi: 10.3934/naco.2019025 |
[10] |
Wilhelm Schlag. Spectral theory and nonlinear partial differential equations: A survey. Discrete and Continuous Dynamical Systems, 2006, 15 (3) : 703-723. doi: 10.3934/dcds.2006.15.703 |
[11] |
Robert Carlson. Spectral theory for nonconservative transmission line networks. Networks and Heterogeneous Media, 2011, 6 (2) : 257-277. doi: 10.3934/nhm.2011.6.257 |
[12] |
Álvaro Pelayo, San Vű Ngọc. First steps in symplectic and spectral theory of integrable systems. Discrete and Continuous Dynamical Systems, 2012, 32 (10) : 3325-3377. doi: 10.3934/dcds.2012.32.3325 |
[13] |
Kung-Ching Chang, Xuefeng Wang, Xie Wu. On the spectral theory of positive operators and PDE applications. Discrete and Continuous Dynamical Systems, 2020, 40 (6) : 3171-3200. doi: 10.3934/dcds.2020054 |
[14] |
Leonid Golinskii, Mikhail Kudryavtsev. An inverse spectral theory for finite CMV matrices. Inverse Problems and Imaging, 2010, 4 (1) : 93-110. doi: 10.3934/ipi.2010.4.93 |
[15] |
Jingxian Sun, Shouchuan Hu. Flow-invariant sets and critical point theory. Discrete and Continuous Dynamical Systems, 2003, 9 (2) : 483-496. doi: 10.3934/dcds.2003.9.483 |
[16] |
Astridh Boccabella, Roberto Natalini, Lorenzo Pareschi. On a continuous mixed strategies model for evolutionary game theory. Kinetic and Related Models, 2011, 4 (1) : 187-213. doi: 10.3934/krm.2011.4.187 |
[17] |
Luis Barreira, César Silva. Lyapunov exponents for continuous transformations and dimension theory. Discrete and Continuous Dynamical Systems, 2005, 13 (2) : 469-490. doi: 10.3934/dcds.2005.13.469 |
[18] |
Asaf Katz. On mixing and sparse ergodic theorems. Journal of Modern Dynamics, 2021, 17: 1-32. doi: 10.3934/jmd.2021001 |
[19] |
El Houcein El Abdalaoui, Joanna Kułaga-Przymus, Mariusz Lemańczyk, Thierry de la Rue. The Chowla and the Sarnak conjectures from ergodic theory point of view. Discrete and Continuous Dynamical Systems, 2017, 37 (6) : 2899-2944. doi: 10.3934/dcds.2017125 |
[20] |
Fanni M. Sélley. A self-consistent dynamical system with multiple absolutely continuous invariant measures. Journal of Computational Dynamics, 2021, 8 (1) : 9-32. doi: 10.3934/jcd.2021002 |
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]