-
Previous Article
Subharmonic solutions for second order Hamiltonian systems
- DCDS Home
- This Issue
-
Next Article
On the behaviour of the solutions for a class of nonlinear elliptic problems in exterior domains
Attractors for families of processes in weak topologies of Banach spaces
1. | Dipartimento di Scienze T.A. - via Cavour 84, 15100 Alessandria, Italy |
2. | Dipartimento di Matematica del Politecnico, corso Duca degli Abruzzi 24, 10129 Torino, Italy |
[1] |
Richard Evan Schwartz. Outer billiards on the Penrose kite: Compactification and renormalization. Journal of Modern Dynamics, 2011, 5 (3) : 473-581. doi: 10.3934/jmd.2011.5.473 |
[2] |
Runlin Zhang. Equidistribution of translates of a homogeneous measure on the Borel–Serre compactification. Discrete and Continuous Dynamical Systems, 2022, 42 (4) : 2053-2071. doi: 10.3934/dcds.2021183 |
[3] |
Ravi Vakil and Aleksey Zinger. A natural smooth compactification of the space of elliptic curves in projective space. Electronic Research Announcements, 2007, 13: 53-59. |
[4] |
Luis Barreira, Claudia Valls. Topological conjugacies and behavior at infinity. Communications on Pure and Applied Analysis, 2014, 13 (2) : 687-701. doi: 10.3934/cpaa.2014.13.687 |
[5] |
Victor S. Kozyakin, Alexander M. Krasnosel’skii, Dmitrii I. Rachinskii. Arnold tongues for bifurcation from infinity. Discrete and Continuous Dynamical Systems - S, 2008, 1 (1) : 107-116. doi: 10.3934/dcdss.2008.1.107 |
[6] |
Erik Lindgren, Peter Lindqvist. Infinity-harmonic potentials and their streamlines. Discrete and Continuous Dynamical Systems, 2019, 39 (8) : 4731-4746. doi: 10.3934/dcds.2019192 |
[7] |
Victor Kozyakin, Alexander M. Krasnosel’skii, Dmitrii Rachinskii. Asymptotics of the Arnold tongues in problems at infinity. Discrete and Continuous Dynamical Systems, 2008, 20 (4) : 989-1011. doi: 10.3934/dcds.2008.20.989 |
[8] |
Alexander Krasnosel'skii, Jean Mawhin. The index at infinity for some vector fields with oscillating nonlinearities. Discrete and Continuous Dynamical Systems, 2000, 6 (1) : 165-174. doi: 10.3934/dcds.2000.6.165 |
[9] |
Michel Chipot, Aleksandar Mojsic, Prosenjit Roy. On some variational problems set on domains tending to infinity. Discrete and Continuous Dynamical Systems, 2016, 36 (7) : 3603-3621. doi: 10.3934/dcds.2016.36.3603 |
[10] |
Guillaume James, Dmitry Pelinovsky. Breather continuation from infinity in nonlinear oscillator chains. Discrete and Continuous Dynamical Systems, 2012, 32 (5) : 1775-1799. doi: 10.3934/dcds.2012.32.1775 |
[11] |
Yukihiro Seki. A remark on blow-up at space infinity. Conference Publications, 2009, 2009 (Special) : 691-696. doi: 10.3934/proc.2009.2009.691 |
[12] |
Francesco Della Pietra, Ireneo Peral. Breaking of resonance for elliptic problems with strong degeneration at infinity. Communications on Pure and Applied Analysis, 2011, 10 (2) : 593-612. doi: 10.3934/cpaa.2011.10.593 |
[13] |
Begoña Alarcón, Víctor Guíñez, Carlos Gutierrez. Hopf bifurcation at infinity for planar vector fields. Discrete and Continuous Dynamical Systems, 2007, 17 (2) : 247-258. doi: 10.3934/dcds.2007.17.247 |
[14] |
Rémi Goudey. A periodic homogenization problem with defects rare at infinity. Networks and Heterogeneous Media, 2022 doi: 10.3934/nhm.2022014 |
[15] |
Alexander Vladimirov. Equicontinuous sweeping processes. Discrete and Continuous Dynamical Systems - B, 2013, 18 (2) : 565-573. doi: 10.3934/dcdsb.2013.18.565 |
[16] |
Uri M. Ascher. Discrete processes and their continuous limits. Journal of Dynamics and Games, 2020, 7 (2) : 123-140. doi: 10.3934/jdg.2020008 |
[17] |
James Broda, Alexander Grigo, Nikola P. Petrov. Convergence rates for semistochastic processes. Discrete and Continuous Dynamical Systems - B, 2019, 24 (1) : 109-125. doi: 10.3934/dcdsb.2019001 |
[18] |
Wael Bahsoun, Paweł Góra. SRB measures for certain Markov processes. Discrete and Continuous Dynamical Systems, 2011, 30 (1) : 17-37. doi: 10.3934/dcds.2011.30.17 |
[19] |
Giuseppe Toscani. A kinetic description of mutation processes in bacteria. Kinetic and Related Models, 2013, 6 (4) : 1043-1055. doi: 10.3934/krm.2013.6.1043 |
[20] |
Mathias Staudigl. A limit theorem for Markov decision processes. Journal of Dynamics and Games, 2014, 1 (4) : 639-659. doi: 10.3934/jdg.2014.1.639 |
2021 Impact Factor: 1.588
Tools
Metrics
Other articles
by authors
[Back to Top]