July  1998, 4(3): 475-484. doi: 10.3934/dcds.1998.4.475

Invariants of twist-wise flow equivalence

1. 

Department of Mathematics, Southern Illinois University, Carbondale, IL 62901, United States

Received  September 1997 Revised  December 1997 Published  April 1998

Flow equivalence of irreducible nontrivial square nonnegative integer matrices is completely determined by two computable invariants, the Parry-Sullivan number and the Bowen-Franks group. Twist-wise flow equivalence is a natural generalization that takes account of twisting in the local stable manifold of the orbits of a flow. Two new invariants in this category are established.
Citation: Michael C. Sullivan. Invariants of twist-wise flow equivalence. Discrete & Continuous Dynamical Systems - A, 1998, 4 (3) : 475-484. doi: 10.3934/dcds.1998.4.475
[1]

Christopher Hoffman. Subshifts of finite type which have completely positive entropy. Discrete & Continuous Dynamical Systems - A, 2011, 29 (4) : 1497-1516. doi: 10.3934/dcds.2011.29.1497

[2]

Igor E. Shparlinski. On some dynamical systems in finite fields and residue rings. Discrete & Continuous Dynamical Systems - A, 2007, 17 (4) : 901-917. doi: 10.3934/dcds.2007.17.901

[3]

Anthony Quas, Terry Soo. Weak mixing suspension flows over shifts of finite type are universal. Journal of Modern Dynamics, 2012, 6 (4) : 427-449. doi: 10.3934/jmd.2012.6.427

[4]

Jianjun Paul Tian. Finite-time perturbations of dynamical systems and applications to tumor therapy. Discrete & Continuous Dynamical Systems - B, 2009, 12 (2) : 469-479. doi: 10.3934/dcdsb.2009.12.469

[5]

María J. Garrido-Atienza, Oleksiy V. Kapustyan, José Valero. Preface to the special issue "Finite and infinite dimensional multivalued dynamical systems". Discrete & Continuous Dynamical Systems - B, 2017, 22 (5) : ⅰ-ⅳ. doi: 10.3934/dcdsb.201705i

[6]

Roumen Anguelov, Jean M.-S. Lubuma, Meir Shillor. Dynamically consistent nonstandard finite difference schemes for continuous dynamical systems. Conference Publications, 2009, 2009 (Special) : 34-43. doi: 10.3934/proc.2009.2009.34

[7]

Xavier Cabré, Amadeu Delshams, Marian Gidea, Chongchun Zeng. Preface of Llavefest: A broad perspective on finite and infinite dimensional dynamical systems. Discrete & Continuous Dynamical Systems - A, 2018, 38 (12) : ⅰ-ⅲ. doi: 10.3934/dcds.201812i

[8]

Felix X.-F. Ye, Hong Qian. Stochastic dynamics Ⅱ: Finite random dynamical systems, linear representation, and entropy production. Discrete & Continuous Dynamical Systems - B, 2019, 24 (8) : 4341-4366. doi: 10.3934/dcdsb.2019122

[9]

N. D. Cong, T. S. Doan, S. Siegmund. A Bohl-Perron type theorem for random dynamical systems. Conference Publications, 2011, 2011 (Special) : 322-331. doi: 10.3934/proc.2011.2011.322

[10]

Dejun Fan, Xiaoyu Yi, Ling Xia, Jingliang Lv. Dynamical behaviors of stochastic type K monotone Lotka-Volterra systems. Discrete & Continuous Dynamical Systems - B, 2019, 24 (6) : 2901-2922. doi: 10.3934/dcdsb.2018291

[11]

Ian Melbourne, Dalia Terhesiu. Mixing properties for toral extensions of slowly mixing dynamical systems with finite and infinite measure. Journal of Modern Dynamics, 2018, 12: 285-313. doi: 10.3934/jmd.2018011

[12]

Xuemei Li, Zaijiu Shang. On the existence of invariant tori in non-conservative dynamical systems with degeneracy and finite differentiability. Discrete & Continuous Dynamical Systems - A, 2019, 39 (7) : 4225-4257. doi: 10.3934/dcds.2019171

[13]

Sachiko Ishida, Tomomi Yokota. Blow-up in finite or infinite time for quasilinear degenerate Keller-Segel systems of parabolic-parabolic type. Discrete & Continuous Dynamical Systems - B, 2013, 18 (10) : 2569-2596. doi: 10.3934/dcdsb.2013.18.2569

[14]

Bing Li, Tuomas Sahlsten, Tony Samuel. Intermediate $\beta$-shifts of finite type. Discrete & Continuous Dynamical Systems - A, 2016, 36 (1) : 323-344. doi: 10.3934/dcds.2016.36.323

[15]

Philipp Gohlke, Dan Rust, Timo Spindeler. Shifts of finite type and random substitutions. Discrete & Continuous Dynamical Systems - A, 2019, 39 (9) : 5085-5103. doi: 10.3934/dcds.2019206

[16]

Chiara Zanini. Singular perturbations of finite dimensional gradient flows. Discrete & Continuous Dynamical Systems - A, 2007, 18 (4) : 657-675. doi: 10.3934/dcds.2007.18.657

[17]

El Houcein El Abdalaoui, Sylvain Bonnot, Ali Messaoudi, Olivier Sester. On the Fibonacci complex dynamical systems. Discrete & Continuous Dynamical Systems - A, 2016, 36 (5) : 2449-2471. doi: 10.3934/dcds.2016.36.2449

[18]

Lianfa He, Hongwen Zheng, Yujun Zhu. Shadowing in random dynamical systems. Discrete & Continuous Dynamical Systems - A, 2005, 12 (2) : 355-362. doi: 10.3934/dcds.2005.12.355

[19]

Fritz Colonius, Marco Spadini. Fundamental semigroups for dynamical systems. Discrete & Continuous Dynamical Systems - A, 2006, 14 (3) : 447-463. doi: 10.3934/dcds.2006.14.447

[20]

John Erik Fornæss. Sustainable dynamical systems. Discrete & Continuous Dynamical Systems - A, 2003, 9 (6) : 1361-1386. doi: 10.3934/dcds.2003.9.1361

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (8)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]