• Previous Article
    Torsion numbers, a tool for the examination of symmetric reaction-diffusion systems related to oscillation numbers
  • DCDS Home
  • This Issue
  • Next Article
    A path following algorithm for infinite quadratic programming on a Hilbert space
October  1998, 4(4): 671-690. doi: 10.3934/dcds.1998.4.671

Semidiscretization in time for nonlinear Schrödinger-waves equations

1. 

Mathématiques Appliquées de Bordeaux, CNRS ERS 123 et, Université Bordeaux 1, 351 cours de la libération, 33405 Talence cedex, France

2. 

Université Bordeaux-I, Mathématiques Appliquées, 351 Cours de la Libération, 33405 Talence Cedex

Received  November 1996 Revised  April 1998 Published  July 1998

In this paper, we are concerned with Crank-Nicolson like schemes for:

$ (NLW_\omega ) \frac{1}{\omega^2} \partial_t^2 E_\omega -i\partial_t E_\omega -\D E_\omega =\lambda | E_\omega |^{2\sigma} E_\omega. $

We present two schemes for which we give some convergence results. On of the scheme is dissipative and we describe precisely the dissipation. We prove that the solution of the second scheme fits that of $(NLW_\omega )$ while the first one compute a average value of the solution.

Citation: Thierry Colin, Pierre Fabrie. Semidiscretization in time for nonlinear Schrödinger-waves equations. Discrete and Continuous Dynamical Systems, 1998, 4 (4) : 671-690. doi: 10.3934/dcds.1998.4.671
[1]

Panagiotis Paraschis, Georgios E. Zouraris. On the convergence of the Crank-Nicolson method for the logarithmic Schrödinger equation. Discrete and Continuous Dynamical Systems - B, 2022  doi: 10.3934/dcdsb.2022074

[2]

Sondre Tesdal Galtung. A convergent Crank-Nicolson Galerkin scheme for the Benjamin-Ono equation. Discrete and Continuous Dynamical Systems, 2018, 38 (3) : 1243-1268. doi: 10.3934/dcds.2018051

[3]

Alexander Zlotnik. The Numerov-Crank-Nicolson scheme on a non-uniform mesh for the time-dependent Schrödinger equation on the half-axis. Kinetic and Related Models, 2015, 8 (3) : 587-613. doi: 10.3934/krm.2015.8.587

[4]

Yoshiho Akagawa, Elliott Ginder, Syota Koide, Seiro Omata, Karel Svadlenka. A Crank-Nicolson type minimization scheme for a hyperbolic free boundary problem. Discrete and Continuous Dynamical Systems - B, 2022, 27 (5) : 2661-2681. doi: 10.3934/dcdsb.2021153

[5]

Dongho Kim, Eun-Jae Park. Adaptive Crank-Nicolson methods with dynamic finite-element spaces for parabolic problems. Discrete and Continuous Dynamical Systems - B, 2008, 10 (4) : 873-886. doi: 10.3934/dcdsb.2008.10.873

[6]

Marissa Condon, Arieh Iserles, Karolina Kropielnicka, Pranav Singh. Solving the wave equation with multifrequency oscillations. Journal of Computational Dynamics, 2019, 6 (2) : 239-249. doi: 10.3934/jcd.2019012

[7]

Hans Zwart, Yann Le Gorrec, Bernhard Maschke. Relating systems properties of the wave and the Schrödinger equation. Evolution Equations and Control Theory, 2015, 4 (2) : 233-240. doi: 10.3934/eect.2015.4.233

[8]

Yingwen Guo, Yinnian He. Fully discrete finite element method based on second-order Crank-Nicolson/Adams-Bashforth scheme for the equations of motion of Oldroyd fluids of order one. Discrete and Continuous Dynamical Systems - B, 2015, 20 (8) : 2583-2609. doi: 10.3934/dcdsb.2015.20.2583

[9]

Bernard Ducomet, Alexander Zlotnik, Ilya Zlotnik. On a family of finite-difference schemes with approximate transparent boundary conditions for a generalized 1D Schrödinger equation. Kinetic and Related Models, 2009, 2 (1) : 151-179. doi: 10.3934/krm.2009.2.151

[10]

Camille Laurent. Internal control of the Schrödinger equation. Mathematical Control and Related Fields, 2014, 4 (2) : 161-186. doi: 10.3934/mcrf.2014.4.161

[11]

Claude Bardos, François Golse, Peter Markowich, Thierry Paul. On the classical limit of the Schrödinger equation. Discrete and Continuous Dynamical Systems, 2015, 35 (12) : 5689-5709. doi: 10.3934/dcds.2015.35.5689

[12]

D.G. deFigueiredo, Yanheng Ding. Solutions of a nonlinear Schrödinger equation. Discrete and Continuous Dynamical Systems, 2002, 8 (3) : 563-584. doi: 10.3934/dcds.2002.8.563

[13]

Frank Wusterhausen. Schrödinger equation with noise on the boundary. Conference Publications, 2013, 2013 (special) : 791-796. doi: 10.3934/proc.2013.2013.791

[14]

Brenton LeMesurier. Modeling thermal effects on nonlinear wave motion in biopolymers by a stochastic discrete nonlinear Schrödinger equation with phase damping. Discrete and Continuous Dynamical Systems - S, 2008, 1 (2) : 317-327. doi: 10.3934/dcdss.2008.1.317

[15]

Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437

[16]

Pavel I. Naumkin, Isahi Sánchez-Suárez. On the critical nongauge invariant nonlinear Schrödinger equation. Discrete and Continuous Dynamical Systems, 2011, 30 (3) : 807-834. doi: 10.3934/dcds.2011.30.807

[17]

Alexander Arbieto, Carlos Matheus. On the periodic Schrödinger-Debye equation. Communications on Pure and Applied Analysis, 2008, 7 (3) : 699-713. doi: 10.3934/cpaa.2008.7.699

[18]

Rossella Bartolo, Anna Maria Candela, Addolorata Salvatore. Infinitely many solutions for a perturbed Schrödinger equation. Conference Publications, 2015, 2015 (special) : 94-102. doi: 10.3934/proc.2015.0094

[19]

Tarek Saanouni. Remarks on the damped nonlinear Schrödinger equation. Evolution Equations and Control Theory, 2020, 9 (3) : 721-732. doi: 10.3934/eect.2020030

[20]

Kai Wang, Dun Zhao, Binhua Feng. Optimal nonlinearity control of Schrödinger equation. Evolution Equations and Control Theory, 2018, 7 (2) : 317-334. doi: 10.3934/eect.2018016

2020 Impact Factor: 1.392

Metrics

  • PDF downloads (62)
  • HTML views (0)
  • Cited by (7)

Other articles
by authors

[Back to Top]