January  1999, 5(1): 215-231. doi: 10.3934/dcds.1999.5.215

The Cauchy problem for nonlinear wave equations in the Sobolev space of critical order

1. 

Department of Mathematics, Hokkaido University Sapporo 060-0810, Japan

2. 

Department of Mathematics, Hokkaido University, Sapporo 060-0810

Received  May 1997 Revised  February 1998 Published  October 1998

We show the local in time solvability of the Cauchy problem for nonlinear wave equations in the Sobolev space of critical order with nonlinear term of exponential type.
Citation: M. Nakamura, Tohru Ozawa. The Cauchy problem for nonlinear wave equations in the Sobolev space of critical order. Discrete & Continuous Dynamical Systems, 1999, 5 (1) : 215-231. doi: 10.3934/dcds.1999.5.215
[1]

Hiroyuki Hirayama, Mamoru Okamoto. Random data Cauchy problem for the nonlinear Schrödinger equation with derivative nonlinearity. Discrete & Continuous Dynamical Systems, 2016, 36 (12) : 6943-6974. doi: 10.3934/dcds.2016102

[2]

Nobu Kishimoto. Local well-posedness for the Cauchy problem of the quadratic Schrödinger equation with nonlinearity $\bar u^2$. Communications on Pure & Applied Analysis, 2008, 7 (5) : 1123-1143. doi: 10.3934/cpaa.2008.7.1123

[3]

Q-Heung Choi, Tacksun Jung. A nonlinear wave equation with jumping nonlinearity. Discrete & Continuous Dynamical Systems, 2000, 6 (4) : 797-802. doi: 10.3934/dcds.2000.6.797

[4]

Mohammad Kafini. On the blow-up of the Cauchy problem of higher-order nonlinear viscoelastic wave equation. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021093

[5]

Ahmad Z. Fino, Mokhtar Kirane. The Cauchy problem for heat equation with fractional Laplacian and exponential nonlinearity. Communications on Pure & Applied Analysis, 2020, 19 (7) : 3625-3650. doi: 10.3934/cpaa.2020160

[6]

Ying Fu. A note on the Cauchy problem of a modified Camassa-Holm equation with cubic nonlinearity. Discrete & Continuous Dynamical Systems, 2015, 35 (5) : 2011-2039. doi: 10.3934/dcds.2015.35.2011

[7]

Hongmei Cao, Hao-Guang Li, Chao-Jiang Xu, Jiang Xu. Well-posedness of Cauchy problem for Landau equation in critical Besov space. Kinetic & Related Models, 2019, 12 (4) : 829-884. doi: 10.3934/krm.2019032

[8]

Masahiro Ikeda, Takahisa Inui, Mamoru Okamoto, Yuta Wakasugi. $ L^p $-$ L^q $ estimates for the damped wave equation and the critical exponent for the nonlinear problem with slowly decaying data. Communications on Pure & Applied Analysis, 2019, 18 (4) : 1967-2008. doi: 10.3934/cpaa.2019090

[9]

Hui Yang, Yuzhu Han. Initial boundary value problem for a strongly damped wave equation with a general nonlinearity. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021019

[10]

Xingxing Liu, Zhijun Qiao, Zhaoyang Yin. On the Cauchy problem for a generalized Camassa-Holm equation with both quadratic and cubic nonlinearity. Communications on Pure & Applied Analysis, 2014, 13 (3) : 1283-1304. doi: 10.3934/cpaa.2014.13.1283

[11]

Miao Chen, Youyan Wan, Chang-Lin Xiang. Local uniqueness problem for a nonlinear elliptic equation. Communications on Pure & Applied Analysis, 2020, 19 (2) : 1037-1055. doi: 10.3934/cpaa.2020048

[12]

Zhaohui Huo, Boling Guo. The well-posedness of Cauchy problem for the generalized nonlinear dispersive equation. Discrete & Continuous Dynamical Systems, 2005, 12 (3) : 387-402. doi: 10.3934/dcds.2005.12.387

[13]

Van Duong Dinh. On the Cauchy problem for the nonlinear semi-relativistic equation in Sobolev spaces. Discrete & Continuous Dynamical Systems, 2018, 38 (3) : 1127-1143. doi: 10.3934/dcds.2018047

[14]

Phan Van Tin. On the Cauchy problem for a derivative nonlinear Schrödinger equation with nonvanishing boundary conditions. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021028

[15]

V. Varlamov, Yue Liu. Cauchy problem for the Ostrovsky equation. Discrete & Continuous Dynamical Systems, 2004, 10 (3) : 731-753. doi: 10.3934/dcds.2004.10.731

[16]

Adrien Dekkers, Anna Rozanova-Pierrat. Cauchy problem for the Kuznetsov equation. Discrete & Continuous Dynamical Systems, 2019, 39 (1) : 277-307. doi: 10.3934/dcds.2019012

[17]

Gen Nakamura, Michiyuki Watanabe. An inverse boundary value problem for a nonlinear wave equation. Inverse Problems & Imaging, 2008, 2 (1) : 121-131. doi: 10.3934/ipi.2008.2.121

[18]

Shouming Zhou. The Cauchy problem for a generalized $b$-equation with higher-order nonlinearities in critical Besov spaces and weighted $L^p$ spaces. Discrete & Continuous Dynamical Systems, 2014, 34 (11) : 4967-4986. doi: 10.3934/dcds.2014.34.4967

[19]

Lorena Bociu, Petronela Radu. Existence of weak solutions to the Cauchy problem of a semilinear wave equation with supercritical interior source and damping. Conference Publications, 2009, 2009 (Special) : 60-71. doi: 10.3934/proc.2009.2009.60

[20]

Rudong Zheng, Zhaoyang Yin. The Cauchy problem for a generalized Novikov equation. Discrete & Continuous Dynamical Systems, 2017, 37 (6) : 3503-3519. doi: 10.3934/dcds.2017149

2020 Impact Factor: 1.392

Metrics

  • PDF downloads (61)
  • HTML views (0)
  • Cited by (10)

Other articles
by authors

[Back to Top]