April  1999, 5(2): 291-300. doi: 10.3934/dcds.1999.5.291

Topologically transitive homeomorphisms of quotients of tori

1. 

School of Mathematics, La Trobe University, Melbourne, Australia 3083, Australia

2. 

Department of Mathematics, University of Ottawa, Ottawa, Canada K1N6N5, Canada

3. 

Departament de Matemàtiques, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain

Revised  January 1998 Published  January 1999

This paper considers the following question: for what finite subgroups $G\subset GL(n, \mathbb Z)$, does there exist an element $A\in GL(n, \mathbb Z)$ inducing a topologically transitive homeomorphism of $T^n$/$G$ We show that for $n = 2$ and 3, the only possibility is $G =\{\pm I\}$. Curiously, in higher dimension the structure is less restrictive. We give a variety of examples in dimension 4. Nevertheless, we show that in dimension $\geq 4$, there are relatively few irreducible examples.
Citation: Grant Cairns, Barry Jessup, Marcel Nicolau. Topologically transitive homeomorphisms of quotients of tori. Discrete and Continuous Dynamical Systems, 1999, 5 (2) : 291-300. doi: 10.3934/dcds.1999.5.291
[1]

Viorel Nitica. Examples of topologically transitive skew-products. Discrete and Continuous Dynamical Systems, 2000, 6 (2) : 351-360. doi: 10.3934/dcds.2000.6.351

[2]

Jan Kwiatkowski, Artur Siemaszko. Discrete orbits in topologically transitive cylindrical transformations. Discrete and Continuous Dynamical Systems, 2010, 27 (3) : 945-961. doi: 10.3934/dcds.2010.27.945

[3]

John Banks, Piotr Oprocha, Brett Stanley. Transitive sofic spacing shifts. Discrete and Continuous Dynamical Systems, 2015, 35 (10) : 4743-4764. doi: 10.3934/dcds.2015.35.4743

[4]

Sergiĭ Kolyada, Mykola Matviichuk. On extensions of transitive maps. Discrete and Continuous Dynamical Systems, 2011, 30 (3) : 767-777. doi: 10.3934/dcds.2011.30.767

[5]

Kesong Yan, Qian Liu, Fanping Zeng. Classification of transitive group actions. Discrete and Continuous Dynamical Systems, 2021, 41 (12) : 5579-5607. doi: 10.3934/dcds.2021089

[6]

Andrew D. Barwell, Chris Good, Piotr Oprocha, Brian E. Raines. Characterizations of $\omega$-limit sets in topologically hyperbolic systems. Discrete and Continuous Dynamical Systems, 2013, 33 (5) : 1819-1833. doi: 10.3934/dcds.2013.33.1819

[7]

Hadda Hmili. Non topologically weakly mixing interval exchanges. Discrete and Continuous Dynamical Systems, 2010, 27 (3) : 1079-1091. doi: 10.3934/dcds.2010.27.1079

[8]

Salvador Addas-Zanata, Fábio A. Tal. Homeomorphisms of the annulus with a transitive lift II. Discrete and Continuous Dynamical Systems, 2011, 31 (3) : 651-668. doi: 10.3934/dcds.2011.31.651

[9]

Shengzhi Zhu, Shaobo Gan, Lan Wen. Indices of singularities of robustly transitive sets. Discrete and Continuous Dynamical Systems, 2008, 21 (3) : 945-957. doi: 10.3934/dcds.2008.21.945

[10]

Carlos Gutierrez, Simon Lloyd, Vladislav Medvedev, Benito Pires, Evgeny Zhuzhoma. Transitive circle exchange transformations with flips. Discrete and Continuous Dynamical Systems, 2010, 26 (1) : 251-263. doi: 10.3934/dcds.2010.26.251

[11]

Cheng Cheng, Shaobo Gan, Yi Shi. A robustly transitive diffeomorphism of Kan's type. Discrete and Continuous Dynamical Systems, 2018, 38 (2) : 867-888. doi: 10.3934/dcds.2018037

[12]

Vladimír Špitalský. Transitive dendrite map with infinite decomposition ideal. Discrete and Continuous Dynamical Systems, 2015, 35 (2) : 771-792. doi: 10.3934/dcds.2015.35.771

[13]

Pablo G. Barrientos, Artem Raibekas. Robustly non-hyperbolic transitive symplectic dynamics. Discrete and Continuous Dynamical Systems, 2018, 38 (12) : 5993-6013. doi: 10.3934/dcds.2018259

[14]

Michał Misiurewicz, Peter Raith. Strict inequalities for the entropy of transitive piecewise monotone maps. Discrete and Continuous Dynamical Systems, 2005, 13 (2) : 451-468. doi: 10.3934/dcds.2005.13.451

[15]

Mykola Matviichuk, Damoon Robatian. Chain transitive induced interval maps on continua. Discrete and Continuous Dynamical Systems, 2015, 35 (2) : 741-755. doi: 10.3934/dcds.2015.35.741

[16]

Cristina Lizana, Vilton Pinheiro, Paulo Varandas. Contribution to the ergodic theory of robustly transitive maps. Discrete and Continuous Dynamical Systems, 2015, 35 (1) : 353-365. doi: 10.3934/dcds.2015.35.353

[17]

Madeleine Jotz Lean, Kirill C. H. Mackenzie. Transitive double Lie algebroids via core diagrams. Journal of Geometric Mechanics, 2021, 13 (3) : 403-457. doi: 10.3934/jgm.2021023

[18]

Maciej J. Capiński, Piotr Zgliczyński. Cone conditions and covering relations for topologically normally hyperbolic invariant manifolds. Discrete and Continuous Dynamical Systems, 2011, 30 (3) : 641-670. doi: 10.3934/dcds.2011.30.641

[19]

Maciej J. Capiński. Covering relations and the existence of topologically normally hyperbolic invariant sets. Discrete and Continuous Dynamical Systems, 2009, 23 (3) : 705-725. doi: 10.3934/dcds.2009.23.705

[20]

Enrique R. Pujals. Density of hyperbolicity and homoclinic bifurcations for attracting topologically hyperbolic sets. Discrete and Continuous Dynamical Systems, 2008, 20 (2) : 335-405. doi: 10.3934/dcds.2008.20.335

2021 Impact Factor: 1.588

Metrics

  • PDF downloads (96)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]