\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

A sharp trace result on a thermo-elastic plate equation with coupled hinged/Neumann boundary conditions

Abstract Related Papers Cited by
  • We consider a thermo-elastic plate equation with rotational forces [Lagnese.1] and with coupled hinged mechanical/Neumann thermal boundary conditions (B.C.). We give a sharp result on the Neumann trace of the mechanical velocity, which is "$\frac{1}{2}$" sharper in the space variable than the result than one would obtain by a formal application of trace theory on the optimal interior regularity. Two proofs by energy methods are given: one which reduces the analysis to sharp wave equation's regularity theory; and one which analyzes directly the corresponding Kirchoff elastic equation. Important implications of this result are noted.
    Mathematics Subject Classification: 35 .

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(93) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return