July  1999, 5(3): 631-638. doi: 10.3934/dcds.1999.5.631

The zero diffusion limit of 2-D Navier-Stokes equations with $L^1$ initial vorticity

1. 

Department of Mathematics, Nanjing University, Nanjing 210093, China

2. 

Institute of Mathematics, Chinese Academy of Sciences, Beijing 10080

Received  September 1998 Revised  December 1998 Published  May 1999

In this paper, we prove the zero diffusion limit of 2-D incompressible Navier- Stokes equations with $L^1(\mathcal R^2)$ initial vorticity is still a weak solution of the corresponding Euler equations.
Citation: Guangrong Wu, Ping Zhang. The zero diffusion limit of 2-D Navier-Stokes equations with $L^1$ initial vorticity. Discrete and Continuous Dynamical Systems, 1999, 5 (3) : 631-638. doi: 10.3934/dcds.1999.5.631
[1]

Joachim Escher, Boris Kolev, Marcus Wunsch. The geometry of a vorticity model equation. Communications on Pure and Applied Analysis, 2012, 11 (4) : 1407-1419. doi: 10.3934/cpaa.2012.11.1407

[2]

Monika Eisenmann, Etienne Emmrich, Volker Mehrmann. Convergence of the backward Euler scheme for the operator-valued Riccati differential equation with semi-definite data. Evolution Equations and Control Theory, 2019, 8 (2) : 315-342. doi: 10.3934/eect.2019017

[3]

Vikas S. Krishnamurthy. The vorticity equation on a rotating sphere and the shallow fluid approximation. Discrete and Continuous Dynamical Systems, 2019, 39 (11) : 6261-6276. doi: 10.3934/dcds.2019273

[4]

Benoît Merlet, Morgan Pierre. Convergence to equilibrium for the backward Euler scheme and applications. Communications on Pure and Applied Analysis, 2010, 9 (3) : 685-702. doi: 10.3934/cpaa.2010.9.685

[5]

David Mumford, Peter W. Michor. On Euler's equation and 'EPDiff'. Journal of Geometric Mechanics, 2013, 5 (3) : 319-344. doi: 10.3934/jgm.2013.5.319

[6]

Thomas Y. Hou, Zuoqiang Shi. Dynamic growth estimates of maximum vorticity for 3D incompressible Euler equations and the SQG model. Discrete and Continuous Dynamical Systems, 2012, 32 (5) : 1449-1463. doi: 10.3934/dcds.2012.32.1449

[7]

Cheng Wang. Convergence analysis of the numerical method for the primitive equations formulated in mean vorticity on a Cartesian grid. Discrete and Continuous Dynamical Systems - B, 2004, 4 (4) : 1143-1172. doi: 10.3934/dcdsb.2004.4.1143

[8]

Alexander Mielke. Weak-convergence methods for Hamiltonian multiscale problems. Discrete and Continuous Dynamical Systems, 2008, 20 (1) : 53-79. doi: 10.3934/dcds.2008.20.53

[9]

Giovanni Bonfanti, Arrigo Cellina. The validity of the Euler-Lagrange equation. Discrete and Continuous Dynamical Systems, 2010, 28 (2) : 511-517. doi: 10.3934/dcds.2010.28.511

[10]

Ruiying Wei, Yin Li, Zheng-an Yao. Global existence and convergence rates of solutions for the compressible Euler equations with damping. Discrete and Continuous Dynamical Systems - B, 2020, 25 (8) : 2949-2967. doi: 10.3934/dcdsb.2020047

[11]

Bahareh Akhtari, Esmail Babolian, Andreas Neuenkirch. An Euler scheme for stochastic delay differential equations on unbounded domains: Pathwise convergence. Discrete and Continuous Dynamical Systems - B, 2015, 20 (1) : 23-38. doi: 10.3934/dcdsb.2015.20.23

[12]

Victor Wasiolek. Uniform global existence and convergence of Euler-Maxwell systems with small parameters. Communications on Pure and Applied Analysis, 2016, 15 (6) : 2007-2021. doi: 10.3934/cpaa.2016025

[13]

Aibin Zang. Kato's type theorems for the convergence of Euler-Voigt equations to Euler equations with Drichlet boundary conditions. Discrete and Continuous Dynamical Systems, 2019, 39 (9) : 4945-4953. doi: 10.3934/dcds.2019202

[14]

Tomás Caraballo, David Cheban. On the structure of the global attractor for non-autonomous dynamical systems with weak convergence. Communications on Pure and Applied Analysis, 2012, 11 (2) : 809-828. doi: 10.3934/cpaa.2012.11.809

[15]

Ta Cong Son, Nguyen Tien Dung, Nguyen Van Tan, Tran Manh Cuong, Hoang Thi Phuong Thao, Pham Dinh Tung. Weak convergence of delay SDEs with applications to Carathéodory approximation. Discrete and Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021249

[16]

Do Sang Kim, Nguyen Ngoc Hai, Bui Van Dinh. Weak convergence theorems for symmetric generalized hybrid mappings and equilibrium problems. Numerical Algebra, Control and Optimization, 2022, 12 (1) : 63-78. doi: 10.3934/naco.2021051

[17]

Giuseppe Maria Coclite, Lorenzo di Ruvo. A note on the convergence of the solution of the Novikov equation. Discrete and Continuous Dynamical Systems - B, 2019, 24 (6) : 2865-2899. doi: 10.3934/dcdsb.2018290

[18]

Anna Amirdjanova, Jie Xiong. Large deviation principle for a stochastic navier-Stokes equation in its vorticity form for a two-dimensional incompressible flow. Discrete and Continuous Dynamical Systems - B, 2006, 6 (4) : 651-666. doi: 10.3934/dcdsb.2006.6.651

[19]

Delia Ionescu-Kruse. Variational derivation of the Camassa-Holm shallow water equation with non-zero vorticity. Discrete and Continuous Dynamical Systems, 2007, 19 (3) : 531-543. doi: 10.3934/dcds.2007.19.531

[20]

Terence Tao. On the universality of the incompressible Euler equation on compact manifolds. Discrete and Continuous Dynamical Systems, 2018, 38 (3) : 1553-1565. doi: 10.3934/dcds.2018064

2021 Impact Factor: 1.588

Metrics

  • PDF downloads (64)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]