July  1999, 5(3): 685-695. doi: 10.3934/dcds.1999.5.685

Smoothing effects for some derivative nonlinear Schrödinger equations

1. 

Department of Applied Mathematics, Science University of Tokyo, 1-3, Kagurazaka, Shinjuku-ku, Tokyo 162

2. 

Instituto de Física y Matemáticas, Universidad Michoacana, AP 2-82, CP 58040, Morelia, Michoacana

3. 

Department of Applied Mathematics, Science University of Tokyo,Tokyo 162-8601, Japan

Received  July 1998 Revised  April 1999 Published  May 1999

In this paper we study a smoothing property of solutions to the Cauchy problem for the nonlinear Schrödinger equations of derivative type:

$iu_t + u_{x x} = \mathcal N(u, \bar u, u_x, \bar u_x), \quad t \in \mathbf R,\ x\in \mathbf R;\quad u(0, x) = u_0(x),\ x\in \mathbf R,\qquad$ (A)

where $\mathcal N(u, \bar u, u_x, \bar u_x) = K_1|u|^2u+K_2|u|^2u_x +K_3u^2\bar u_x +K_4|u_x|^2u+K_5\bar u$ $u_x^2 +K_6|u_x|^2u_x$, the functions $K_j = K_j (|u|^2)$, $K_j(z)\in C^\infty ([0, \infty))$. If the nonlinear terms $\mathcal N =\frac{\bar{u} u_x^2}{1+|u|^2}$, then equation (A) appears in the classical pseudospin magnet model [16]. Our purpose in this paper is to consider the case when the nonlinearity $\mathcal N$ depends both on $u_x$ and $\bar u_x$. We prove that if the initial data $u_0\in H^{3, \infty}$ and the norms $||u_0||_{3, l}$ are sufficiently small for any $l\in N$, (when $\mathcal N$ depends on $\bar u_x$), then for some time $T > 0$ there exists a unique solution $u\in C^\infty ([-T, T]$\ $\{0\};\ C^\infty(\mathbb R))$ of the Cauchy problem (A). Here $H^{m, s} = \{\varphi \in \mathbf L^2;\ ||\varphi||_{m, s}<\infty \}$, $||\varphi||_{m, s}=||(1+x^2)^{s/2}(1-\partial_x^2)^{m/2}\varphi||_{\mathbf L^2}, \mathbf H^{m, \infty}=\cap_{s\geq 1} H^{m, s}.$

Citation: Nakao Hayashi, Pavel I. Naumkin, Patrick-Nicolas Pipolo. Smoothing effects for some derivative nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems, 1999, 5 (3) : 685-695. doi: 10.3934/dcds.1999.5.685
[1]

Lassaad Aloui, Imen El Khal El Taief. The Kato smoothing effect for the nonlinear regularized Schrödinger equation on compact manifolds. Mathematical Control & Related Fields, 2020, 10 (4) : 699-714. doi: 10.3934/mcrf.2020016

[2]

Hideo Takaoka. Energy transfer model for the derivative nonlinear Schrödinger equations on the torus. Discrete & Continuous Dynamical Systems, 2017, 37 (11) : 5819-5841. doi: 10.3934/dcds.2017253

[3]

Razvan Mosincat, Haewon Yoon. Unconditional uniqueness for the derivative nonlinear Schrödinger equation on the real line. Discrete & Continuous Dynamical Systems, 2020, 40 (1) : 47-80. doi: 10.3934/dcds.2020003

[4]

Meina Gao, Jianjun Liu. Quasi-periodic solutions for derivative nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems, 2012, 32 (6) : 2101-2123. doi: 10.3934/dcds.2012.32.2101

[5]

Nakao Hayashi, Elena I. Kaikina, Pavel I. Naumkin. Large time behavior of solutions to the generalized derivative nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems, 1999, 5 (1) : 93-106. doi: 10.3934/dcds.1999.5.93

[6]

Hiroyuki Hirayama, Mamoru Okamoto. Random data Cauchy problem for the nonlinear Schrödinger equation with derivative nonlinearity. Discrete & Continuous Dynamical Systems, 2016, 36 (12) : 6943-6974. doi: 10.3934/dcds.2016102

[7]

Kazumasa Fujiwara, Tohru Ozawa. On the lifespan of strong solutions to the periodic derivative nonlinear Schrödinger equation. Evolution Equations & Control Theory, 2018, 7 (2) : 275-280. doi: 10.3934/eect.2018013

[8]

Nakao Hayashi, Pavel I. Naumkin. Asymptotic behavior in time of solutions to the derivative nonlinear Schrödinger equation revisited. Discrete & Continuous Dynamical Systems, 1997, 3 (3) : 383-400. doi: 10.3934/dcds.1997.3.383

[9]

Pavel I. Naumkin, Isahi Sánchez-Suárez. Asymptotics for the higher-order derivative nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2021, 20 (4) : 1447-1478. doi: 10.3934/cpaa.2021028

[10]

Phan Van Tin. On the Cauchy problem for a derivative nonlinear Schrödinger equation with nonvanishing boundary conditions. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021028

[11]

Brenton LeMesurier. Modeling thermal effects on nonlinear wave motion in biopolymers by a stochastic discrete nonlinear Schrödinger equation with phase damping. Discrete & Continuous Dynamical Systems - S, 2008, 1 (2) : 317-327. doi: 10.3934/dcdss.2008.1.317

[12]

Yuji Sagawa, Hideaki Sunagawa. The lifespan of small solutions to cubic derivative nonlinear Schrödinger equations in one space dimension. Discrete & Continuous Dynamical Systems, 2016, 36 (10) : 5743-5761. doi: 10.3934/dcds.2016052

[13]

Hiroyuki Hirayama. Well-posedness and scattering for a system of quadratic derivative nonlinear Schrödinger equations with low regularity initial data. Communications on Pure & Applied Analysis, 2014, 13 (4) : 1563-1591. doi: 10.3934/cpaa.2014.13.1563

[14]

Zihua Guo, Yifei Wu. Global well-posedness for the derivative nonlinear Schrödinger equation in $H^{\frac 12} (\mathbb{R} )$. Discrete & Continuous Dynamical Systems, 2017, 37 (1) : 257-264. doi: 10.3934/dcds.2017010

[15]

Nakao Hayashi, Pavel Naumkin. On the reduction of the modified Benjamin-Ono equation to the cubic derivative nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems, 2002, 8 (1) : 237-255. doi: 10.3934/dcds.2002.8.237

[16]

Chengchun Hao. Well-posedness for one-dimensional derivative nonlinear Schrödinger equations. Communications on Pure & Applied Analysis, 2007, 6 (4) : 997-1021. doi: 10.3934/cpaa.2007.6.997

[17]

Minoru Murai, Kunimochi Sakamoto, Shoji Yotsutani. Representation formula for traveling waves to a derivative nonlinear Schrödinger equation with the periodic boundary condition. Conference Publications, 2015, 2015 (special) : 878-900. doi: 10.3934/proc.2015.0878

[18]

Juan Belmonte-Beitia, Vladyslav Prytula. Existence of solitary waves in nonlinear equations of Schrödinger type. Discrete & Continuous Dynamical Systems - S, 2011, 4 (5) : 1007-1017. doi: 10.3934/dcdss.2011.4.1007

[19]

Van Duong Dinh, Binhua Feng. On fractional nonlinear Schrödinger equation with combined power-type nonlinearities. Discrete & Continuous Dynamical Systems, 2019, 39 (8) : 4565-4612. doi: 10.3934/dcds.2019188

[20]

Shaoming Guo, Xianfeng Ren, Baoxiang Wang. Local well-posedness for the derivative nonlinear Schrödinger equation with $ L^2 $-subcritical data. Discrete & Continuous Dynamical Systems, 2021, 41 (9) : 4207-4253. doi: 10.3934/dcds.2021034

2020 Impact Factor: 1.392

Metrics

  • PDF downloads (58)
  • HTML views (0)
  • Cited by (4)

[Back to Top]