$dF_n$/$dt=\varphi(F_n)(F_{n-1}-F_n)\quad\qquad\qquad (\star)$
where, for every $t, \{F_n(t), n=0,1,2,\ldots\}$ is a probability distribution function, and $\varphi$ is a positive function on $[0, 1]$. The equation $(\star)$ arose as a description of industrial economic development taking into accout processes of creation and propagation of new technologies. The paper contains a survey of the earlier received results including a multi-dimensional generalization and an application to the economic growth theory.
If $\varphi$ is decreasing then solutions of Cauchy problem for $(\star)$ approach to a family of wave-trains. We show that diffusion-wise asymptotic behavior takes place if $\varphi$ is increasing. For the nonmonotonic case a general hypothesis about asymtotic behavior is formulated and an analogue of a Weinberger's (1990) theorem is proved. It is argued that the equation can be considereded as an analogue of Burgers equation.
Citation: |