-
Previous Article
Stable ergodicity of skew products of one-dimensional hyperbolic flows
- DCDS Home
- This Issue
-
Next Article
Bifurcating vortex solutions of the complex Ginzburg-Landau equation
Wave equation with memory
1. | Dipartimento di Matematica, Università di Roma "La Sapienza", P.le Aldo Moro, 5 - 00185 Roma, Italy |
$u'(t) = Au(t) + \int_{-r}^0 k(s)A_1 u(s) ds + f(t),\quad t\ge 0;\quad u(t) = z(t), \quad t\in [-r,0]$
(where $A : D(A)\subset X \to X$ is a closed operator and $A_1 : D(A)\to X$ is continuous) is proved and applied to get a classical solution of the wave equation with memory effects
$ w_{t t} (t,x) = w_{x x}(t, x) + \int_{-r}^0 k(s) w_{x x} (t + s, x)ds + f(t, x), \quad t\ge 0,\quad x\in [0,l]$
To include also the Dirichlet boundary conditions and to get $C^2$-solutions, $D(A)$ is not supposed to be dense hence A is only a Hille-Yosida operator. The methods used are based on a reduction of the inhomogeneous equation to a homogeneous system of the first order and then on an immersion of $X$ in its extrapolation space, where the regularity and perturbation results of the classical semigroup theory can be applied.
[1] |
Serge Nicaise, Cristina Pignotti, Julie Valein. Exponential stability of the wave equation with boundary time-varying delay. Discrete and Continuous Dynamical Systems - S, 2011, 4 (3) : 693-722. doi: 10.3934/dcdss.2011.4.693 |
[2] |
Serge Nicaise, Cristina Pignotti. Stability of the wave equation with localized Kelvin-Voigt damping and boundary delay feedback. Discrete and Continuous Dynamical Systems - S, 2016, 9 (3) : 791-813. doi: 10.3934/dcdss.2016029 |
[3] |
Yaru Xie, Genqi Xu. Exponential stability of 1-d wave equation with the boundary time delay based on the interior control. Discrete and Continuous Dynamical Systems - S, 2017, 10 (3) : 557-579. doi: 10.3934/dcdss.2017028 |
[4] |
Yanni Guo, Genqi Xu, Yansha Guo. Stabilization of the wave equation with interior input delay and mixed Neumann-Dirichlet boundary. Discrete and Continuous Dynamical Systems - B, 2016, 21 (8) : 2491-2507. doi: 10.3934/dcdsb.2016057 |
[5] |
Serge Nicaise, Julie Valein. Stabilization of the wave equation on 1-d networks with a delay term in the nodal feedbacks. Networks and Heterogeneous Media, 2007, 2 (3) : 425-479. doi: 10.3934/nhm.2007.2.425 |
[6] |
Guo Lin, Haiyan Wang. Traveling wave solutions of a reaction-diffusion equation with state-dependent delay. Communications on Pure and Applied Analysis, 2016, 15 (2) : 319-334. doi: 10.3934/cpaa.2016.15.319 |
[7] |
Ferhat Mohamed, Hakem Ali. Energy decay of solutions for the wave equation with a time-varying delay term in the weakly nonlinear internal feedbacks. Discrete and Continuous Dynamical Systems - B, 2017, 22 (2) : 491-506. doi: 10.3934/dcdsb.2017024 |
[8] |
Vanessa Barros, Carlos Nonato, Carlos Raposo. Global existence and energy decay of solutions for a wave equation with non-constant delay and nonlinear weights. Electronic Research Archive, 2020, 28 (1) : 205-220. doi: 10.3934/era.2020014 |
[9] |
Tai-Chia Lin. Vortices for the nonlinear wave equation. Discrete and Continuous Dynamical Systems, 1999, 5 (2) : 391-398. doi: 10.3934/dcds.1999.5.391 |
[10] |
V. Pata, Sergey Zelik. A remark on the damped wave equation. Communications on Pure and Applied Analysis, 2006, 5 (3) : 611-616. doi: 10.3934/cpaa.2006.5.611 |
[11] |
Q-Heung Choi, Tacksun Jung. A nonlinear wave equation with jumping nonlinearity. Discrete and Continuous Dynamical Systems, 2000, 6 (4) : 797-802. doi: 10.3934/dcds.2000.6.797 |
[12] |
Út V. Lê. Regularity of the solution of a nonlinear wave equation. Communications on Pure and Applied Analysis, 2010, 9 (4) : 1099-1115. doi: 10.3934/cpaa.2010.9.1099 |
[13] |
Jorge A. Esquivel-Avila. Qualitative analysis of a nonlinear wave equation. Discrete and Continuous Dynamical Systems, 2004, 10 (3) : 787-804. doi: 10.3934/dcds.2004.10.787 |
[14] |
Q-Heung Choi, Changbum Chun, Tacksun Jung. The multiplicity of solutions and geometry in a wave equation. Communications on Pure and Applied Analysis, 2003, 2 (2) : 159-170. doi: 10.3934/cpaa.2003.2.159 |
[15] |
Marissa Condon, Arieh Iserles, Karolina Kropielnicka, Pranav Singh. Solving the wave equation with multifrequency oscillations. Journal of Computational Dynamics, 2019, 6 (2) : 239-249. doi: 10.3934/jcd.2019012 |
[16] |
Yang Liu, Wenke Li. A family of potential wells for a wave equation. Electronic Research Archive, 2020, 28 (2) : 807-820. doi: 10.3934/era.2020041 |
[17] |
Tony Liimatainen, Lauri Oksanen. Counterexamples to inverse problems for the wave equation. Inverse Problems and Imaging, 2022, 16 (2) : 467-479. doi: 10.3934/ipi.2021058 |
[18] |
Bernold Fiedler, Isabelle Schneider. Stabilized rapid oscillations in a delay equation: Feedback control by a small resonant delay. Discrete and Continuous Dynamical Systems - S, 2020, 13 (4) : 1145-1185. doi: 10.3934/dcdss.2020068 |
[19] |
Kun Li, Jianhua Huang, Xiong Li. Traveling wave solutions in advection hyperbolic-parabolic system with nonlocal delay. Discrete and Continuous Dynamical Systems - B, 2018, 23 (6) : 2091-2119. doi: 10.3934/dcdsb.2018227 |
[20] |
Stéphane Junca, Bruno Lombard. Stability of neutral delay differential equations modeling wave propagation in cracked media. Conference Publications, 2015, 2015 (special) : 678-685. doi: 10.3934/proc.2015.0678 |
2021 Impact Factor: 1.588
Tools
Metrics
Other articles
by authors
[Back to Top]