-
Previous Article
Symbolic dynamics in nondifferentiable system originating in R-L-Diode driven circuit
- DCDS Home
- This Issue
- Next Article
The diffusion time of the connecting orbit around rotation number zero for the monotone twist maps
1. | Department of Mathematics, University of California, Los Angeles, CA 90025, United States |
[1] |
Patrick Guidotti. A family of nonlinear diffusions connecting Perona-Malik to standard diffusion. Discrete and Continuous Dynamical Systems - S, 2012, 5 (3) : 581-590. doi: 10.3934/dcdss.2012.5.581 |
[2] |
Saloni Rathee, Nilam. Quantitative analysis of time delays of glucose - insulin dynamics using artificial pancreas. Discrete and Continuous Dynamical Systems - B, 2015, 20 (9) : 3115-3129. doi: 10.3934/dcdsb.2015.20.3115 |
[3] |
Michael Dellnitz, O. Junge, B Thiere. The numerical detection of connecting orbits. Discrete and Continuous Dynamical Systems - B, 2001, 1 (1) : 125-135. doi: 10.3934/dcdsb.2001.1.125 |
[4] |
Sabyasachi Karati, Palash Sarkar. Connecting Legendre with Kummer and Edwards. Advances in Mathematics of Communications, 2019, 13 (1) : 41-66. doi: 10.3934/amc.2019003 |
[5] |
Costică Moroşanu, Bianca Satco. Qualitative and quantitative analysis for a nonlocal and nonlinear reaction-diffusion problem with in-homogeneous Neumann boundary conditions. Discrete and Continuous Dynamical Systems - S, 2022 doi: 10.3934/dcdss.2022042 |
[6] |
Silviu Dumitru Pavăl, Alex Vasilică, Alin Adochiei. Qualitative and quantitative analysis of a nonlinear second-order anisotropic reaction-diffusion model of an epidemic infection spread. Discrete and Continuous Dynamical Systems - S, 2022 doi: 10.3934/dcdss.2022094 |
[7] |
Peng Chen, Linfeng Mei, Xianhua Tang. Nonstationary homoclinic orbit for an infinite-dimensional fractional reaction-diffusion system. Discrete and Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021279 |
[8] |
Luigi Barletti, Philipp Holzinger, Ansgar Jüngel. Formal derivation of quantum drift-diffusion equations with spin-orbit interaction. Kinetic and Related Models, 2022, 15 (2) : 257-282. doi: 10.3934/krm.2022007 |
[9] |
Lan Wen. A uniform $C^1$ connecting lemma. Discrete and Continuous Dynamical Systems, 2002, 8 (1) : 257-265. doi: 10.3934/dcds.2002.8.257 |
[10] |
Vito Mandorino. Connecting orbits for families of Tonelli Hamiltonians. Journal of Modern Dynamics, 2012, 6 (4) : 499-538. doi: 10.3934/jmd.2012.6.499 |
[11] |
Alex Eskin, Gregory Margulis and Shahar Mozes. On a quantitative version of the Oppenheim conjecture. Electronic Research Announcements, 1995, 1: 124-130. |
[12] |
Mauro Cesa. A brief history of quantitative finance. Probability, Uncertainty and Quantitative Risk, 2017, 2 (0) : 6-. doi: 10.1186/s41546-017-0018-3 |
[13] |
Lin Wang. Quantitative destruction of invariant circles. Discrete and Continuous Dynamical Systems, 2022, 42 (3) : 1569-1583. doi: 10.3934/dcds.2021164 |
[14] |
Marek Fila, Hiroshi Matano. Connecting equilibria by blow-up solutions. Discrete and Continuous Dynamical Systems, 2000, 6 (1) : 155-164. doi: 10.3934/dcds.2000.6.155 |
[15] |
Francesca Alessio, Piero Montecchiari, Andres Zuniga. Prescribed energy connecting orbits for gradient systems. Discrete and Continuous Dynamical Systems, 2019, 39 (8) : 4895-4928. doi: 10.3934/dcds.2019200 |
[16] |
Vladimir V. Chepyzhov, Mark I. Vishik. Trajectory attractor for reaction-diffusion system with diffusion coefficient vanishing in time. Discrete and Continuous Dynamical Systems, 2010, 27 (4) : 1493-1509. doi: 10.3934/dcds.2010.27.1493 |
[17] |
Binjie Li, Xiaoping Xie. Regularity of solutions to time fractional diffusion equations. Discrete and Continuous Dynamical Systems - B, 2019, 24 (7) : 3195-3210. doi: 10.3934/dcdsb.2018340 |
[18] |
Monika Joanna Piotrowska, Urszula Foryś, Marek Bodnar, Jan Poleszczuk. A simple model of carcinogenic mutations with time delay and diffusion. Mathematical Biosciences & Engineering, 2013, 10 (3) : 861-872. doi: 10.3934/mbe.2013.10.861 |
[19] |
Jacky Cresson. The transfer lemma for Graff tori and Arnold diffusion time. Discrete and Continuous Dynamical Systems, 2001, 7 (4) : 787-800. doi: 10.3934/dcds.2001.7.787 |
[20] |
Massimiliano Berti, Philippe Bolle. Fast Arnold diffusion in systems with three time scales. Discrete and Continuous Dynamical Systems, 2002, 8 (3) : 795-811. doi: 10.3934/dcds.2002.8.795 |
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]