
Previous Article
Second order sufficient optimality conditions for nonlinear parabolic control problems with state constraints
 DCDS Home
 This Issue

Next Article
Uniform inertial sets for damped wave equations
On the 2D Riemann problem for the compressible Euler equations II. Interaction of contact discontinuities
1.  Institute of Mathematics, Academia Sinica, Beijing 100080, China 
2.  Department of Mathematics, Northwestern University, 2033 Sheridan Road, Evanston, IL 602082730 
3.  Institute of Applied Mathematics, Academia Sinica, Beijing 100080, China 
[1] 
Tung Chang, GuiQiang Chen, Shuli Yang. On the 2D Riemann problem for the compressible Euler equations I. Interaction of shocks and rarefaction waves. Discrete & Continuous Dynamical Systems  A, 1995, 1 (4) : 555584. doi: 10.3934/dcds.1995.1.555 
[2] 
Feimin Huang, Yi Wang, Tong Yang. Fluid dynamic limit to the Riemann Solutions of Euler equations: I. Superposition of rarefaction waves and contact discontinuity. Kinetic & Related Models, 2010, 3 (4) : 685728. doi: 10.3934/krm.2010.3.685 
[3] 
Hualin Zheng. Stability of a superposition of shock waves with contact discontinuities for the JinXin relaxation system. Kinetic & Related Models, 2015, 8 (3) : 559585. doi: 10.3934/krm.2015.8.559 
[4] 
Min Ding, Hairong Yuan. Stability of transonic jets with strong rarefaction waves for twodimensional steady compressible Euler system. Discrete & Continuous Dynamical Systems  A, 2018, 38 (6) : 29112943. doi: 10.3934/dcds.2018125 
[5] 
Dongbing Zha. Remarks on nonlinear elastic waves in the radial symmetry in 2D. Discrete & Continuous Dynamical Systems  A, 2016, 36 (7) : 40514062. doi: 10.3934/dcds.2016.36.4051 
[6] 
XiaoBiao Lin, Stephen Schecter. Traveling waves and shock waves. Discrete & Continuous Dynamical Systems  A, 2004, 10 (4) : iii. doi: 10.3934/dcds.2004.10.4i 
[7] 
Feng Xie. Nonlinear stability of combination of viscous contact wave with rarefaction waves for a 1D radiation hydrodynamics model. Discrete & Continuous Dynamical Systems  B, 2012, 17 (3) : 10751100. doi: 10.3934/dcdsb.2012.17.1075 
[8] 
Christian Rohde, Wenjun Wang, Feng Xie. Hyperbolichyperbolic relaxation limit for a 1D compressible radiation hydrodynamics model: superposition of rarefaction and contact waves. Communications on Pure & Applied Analysis, 2013, 12 (5) : 21452171. doi: 10.3934/cpaa.2013.12.2145 
[9] 
Yanbo Hu, Tong Li. The regularity of a degenerate Goursat problem for the 2D isothermal Euler equations. Communications on Pure & Applied Analysis, 2019, 18 (6) : 33173336. doi: 10.3934/cpaa.2019149 
[10] 
James K. Knowles. On shock waves in solids. Discrete & Continuous Dynamical Systems  B, 2007, 7 (3) : 573580. doi: 10.3934/dcdsb.2007.7.573 
[11] 
José R. Quintero. Nonlinear stability of solitary waves for a 2d BenneyLuke equation. Discrete & Continuous Dynamical Systems  A, 2005, 13 (1) : 203218. doi: 10.3934/dcds.2005.13.203 
[12] 
Yuri Gaididei, Anders Rønne Rasmussen, Peter Leth Christiansen, Mads Peter Sørensen. Oscillating nonlinear acoustic shock waves. Evolution Equations & Control Theory, 2016, 5 (3) : 367381. doi: 10.3934/eect.2016009 
[13] 
Tong Yang, Huijiang Zhao. Asymptotics toward strong rarefaction waves for $2\times 2$ systems of viscous conservation laws. Discrete & Continuous Dynamical Systems  A, 2005, 12 (2) : 251282. doi: 10.3934/dcds.2005.12.251 
[14] 
Frederike Kissling, Christian Rohde. The computation of nonclassical shock waves with a heterogeneous multiscale method. Networks & Heterogeneous Media, 2010, 5 (3) : 661674. doi: 10.3934/nhm.2010.5.661 
[15] 
Martina ChirilusBruckner, Guido Schneider. Interaction of oscillatory packets of water waves. Conference Publications, 2015, 2015 (special) : 267275. doi: 10.3934/proc.2015.0267 
[16] 
Masashi Ohnawa. Convergence rates towards the traveling waves for a model system of radiating gas with discontinuities. Kinetic & Related Models, 2012, 5 (4) : 857872. doi: 10.3934/krm.2012.5.857 
[17] 
Gero Friesecke, Karsten Matthies. Geometric solitary waves in a 2D massspring lattice. Discrete & Continuous Dynamical Systems  B, 2003, 3 (1) : 105144. doi: 10.3934/dcdsb.2003.3.105 
[18] 
Bingkang Huang, Lusheng Wang, Qinghua Xiao. Global nonlinear stability of rarefaction waves for compressible NavierStokes equations with temperature and density dependent transport coefficients. Kinetic & Related Models, 2016, 9 (3) : 469514. doi: 10.3934/krm.2016004 
[19] 
Michiel Bertsch, Masayasu Mimura, Tohru Wakasa. Modeling contact inhibition of growth: Traveling waves. Networks & Heterogeneous Media, 2013, 8 (1) : 131147. doi: 10.3934/nhm.2013.8.131 
[20] 
Iryna Egorova, Johanna Michor, Gerald Teschl. Rarefaction waves for the Toda equation via nonlinear steepest descent. Discrete & Continuous Dynamical Systems  A, 2018, 38 (4) : 20072028. doi: 10.3934/dcds.2018081 
2019 Impact Factor: 1.338
Tools
Metrics
Other articles
by authors
[Back to Top]