\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Global well-posedness for the Kadomtsev-Petviashvili II equation

Abstract Related Papers Cited by
  • We study the global well-posedness of the Cauchy problem for the KP II equation. We prove the global well-posedness in the inhomogeneous-homogeneous anisotropic Sobolev spaces $H_{x,y}^{-1/78+\epsilon,0}\cap H_{x,y}^{-17/144,0}$. Though we require the use of the homogeneous Sobolev space of negative index, we obtain the global well-posedness below $L^2$.
    Mathematics Subject Classification: 35Q53.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(133) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return