July  2000, 6(3): 683-690. doi: 10.3934/dcds.2000.6.683

Symmetry results for functions yielding best constants in Sobolev-type inequalities

1. 

Mathematisches Institut, Universität zu Köln, D - 50923 Köln, Germany

Received  November 1999 Revised  March 2000 Published  April 2000

I report on symmetry results for functions which yield sharp constants in various Sobolev-type inequalities. One of these results relies on a surprising convexity property.
Citation: Bernhard Kawohl. Symmetry results for functions yielding best constants in Sobolev-type inequalities. Discrete & Continuous Dynamical Systems - A, 2000, 6 (3) : 683-690. doi: 10.3934/dcds.2000.6.683
[1]

Yifan Chen, Thomas Y. Hou. Function approximation via the subsampled Poincaré inequality. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 169-199. doi: 10.3934/dcds.2020296

[2]

Noah Stevenson, Ian Tice. A truncated real interpolation method and characterizations of screened Sobolev spaces. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5509-5566. doi: 10.3934/cpaa.2020250

[3]

Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of a Sobolev type impulsive functional evolution system in Banach spaces. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020049

[4]

Lihong Zhang, Wenwen Hou, Bashir Ahmad, Guotao Wang. Radial symmetry for logarithmic Choquard equation involving a generalized tempered fractional $ p $-Laplacian. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020445

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (76)
  • HTML views (0)
  • Cited by (23)

Other articles
by authors

[Back to Top]