• Previous Article
    Neuronal dynamics in time varying enviroments: Continuous and discrete time models
  • DCDS Home
  • This Issue
  • Next Article
    Structural stability of planar semi-homogeneous polynomial vector fields applications to critical points and to infinity
October  2000, 6(4): 829-840. doi: 10.3934/dcds.2000.6.829

Inertial manifolds with delay for retarded semilinear parabolic equations

1. 

Department of Mechanics and Mathematics, Kharkov University, 4 Svobody sqr., 61077, Kharkov, Ukraine

Received  May 1999 Revised  April 2000 Published  August 2000

We consider the system of parabolic equations with distributed delay. The existence of Inertial Manifolds with Delay is proved. We prove that the system has finite number of determining modes and can be reproduced by a finite-dimensional system with concerntrated delays.
Citation: A. V. Rezounenko. Inertial manifolds with delay for retarded semilinear parabolic equations. Discrete & Continuous Dynamical Systems, 2000, 6 (4) : 829-840. doi: 10.3934/dcds.2000.6.829
[1]

James C. Robinson. Inertial manifolds with and without delay. Discrete & Continuous Dynamical Systems, 1999, 5 (4) : 813-824. doi: 10.3934/dcds.1999.5.813

[2]

Cung The Anh, Le Van Hieu, Nguyen Thieu Huy. Inertial manifolds for a class of non-autonomous semilinear parabolic equations with finite delay. Discrete & Continuous Dynamical Systems, 2013, 33 (2) : 483-503. doi: 10.3934/dcds.2013.33.483

[3]

Kurt Falk, Marc Kesseböhmer, Tobias Henrik Oertel-Jäger, Jens D. M. Rademacher, Tony Samuel. Preface: Diffusion on fractals and non-linear dynamics. Discrete & Continuous Dynamical Systems - S, 2017, 10 (2) : i-iv. doi: 10.3934/dcdss.201702i

[4]

Dmitry Dolgopyat. Bouncing balls in non-linear potentials. Discrete & Continuous Dynamical Systems, 2008, 22 (1&2) : 165-182. doi: 10.3934/dcds.2008.22.165

[5]

Dorin Ervin Dutkay and Palle E. T. Jorgensen. Wavelet constructions in non-linear dynamics. Electronic Research Announcements, 2005, 11: 21-33.

[6]

Armin Lechleiter. Explicit characterization of the support of non-linear inclusions. Inverse Problems & Imaging, 2011, 5 (3) : 675-694. doi: 10.3934/ipi.2011.5.675

[7]

Denis Serre. Non-linear electromagnetism and special relativity. Discrete & Continuous Dynamical Systems, 2009, 23 (1&2) : 435-454. doi: 10.3934/dcds.2009.23.435

[8]

Feng-Yu Wang. Exponential convergence of non-linear monotone SPDEs. Discrete & Continuous Dynamical Systems, 2015, 35 (11) : 5239-5253. doi: 10.3934/dcds.2015.35.5239

[9]

Tommi Brander, Joonas Ilmavirta, Manas Kar. Superconductive and insulating inclusions for linear and non-linear conductivity equations. Inverse Problems & Imaging, 2018, 12 (1) : 91-123. doi: 10.3934/ipi.2018004

[10]

James C. Robinson. Computing inertial manifolds. Discrete & Continuous Dynamical Systems, 2002, 8 (4) : 815-833. doi: 10.3934/dcds.2002.8.815

[11]

José M. Arrieta, Esperanza Santamaría. Estimates on the distance of inertial manifolds. Discrete & Continuous Dynamical Systems, 2014, 34 (10) : 3921-3944. doi: 10.3934/dcds.2014.34.3921

[12]

Emine Kaya, Eugenio Aulisa, Akif Ibragimov, Padmanabhan Seshaiyer. A stability estimate for fluid structure interaction problem with non-linear beam. Conference Publications, 2009, 2009 (Special) : 424-432. doi: 10.3934/proc.2009.2009.424

[13]

Pablo Ochoa. Approximation schemes for non-linear second order equations on the Heisenberg group. Communications on Pure & Applied Analysis, 2015, 14 (5) : 1841-1863. doi: 10.3934/cpaa.2015.14.1841

[14]

Eugenio Aulisa, Akif Ibragimov, Emine Yasemen Kaya-Cekin. Stability analysis of non-linear plates coupled with Darcy flows. Evolution Equations & Control Theory, 2013, 2 (2) : 193-232. doi: 10.3934/eect.2013.2.193

[15]

Noufel Frikha, Valentin Konakov, Stéphane Menozzi. Well-posedness of some non-linear stable driven SDEs. Discrete & Continuous Dynamical Systems, 2021, 41 (2) : 849-898. doi: 10.3934/dcds.2020302

[16]

Olusola Kolebaje, Ebenezer Bonyah, Lateef Mustapha. The first integral method for two fractional non-linear biological models. Discrete & Continuous Dynamical Systems - S, 2019, 12 (3) : 487-502. doi: 10.3934/dcdss.2019032

[17]

Tarek Saanouni. Non-linear bi-harmonic Choquard equations. Communications on Pure & Applied Analysis, 2020, 19 (11) : 5033-5057. doi: 10.3934/cpaa.2020221

[18]

Hamza Khalfi, Amal Aarab, Nour Eddine Alaa. Energetics and coarsening analysis of a simplified non-linear surface growth model. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021014

[19]

Faustino Sánchez-Garduño, Philip K. Maini, Judith Pérez-Velázquez. A non-linear degenerate equation for direct aggregation and traveling wave dynamics. Discrete & Continuous Dynamical Systems - B, 2010, 13 (2) : 455-487. doi: 10.3934/dcdsb.2010.13.455

[20]

T. Gilbert, J. R. Dorfman. On the parametric dependences of a class of non-linear singular maps. Discrete & Continuous Dynamical Systems - B, 2004, 4 (2) : 391-406. doi: 10.3934/dcdsb.2004.4.391

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (56)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]