October  2000, 6(4): 861-874. doi: 10.3934/dcds.2000.6.861

A topological degree approach to sublinear systems of second order differential equations

1. 

Dipartimento di Matematica, Università di Torino, Via Carlo Alberto 10, 10123 Torino, Italy, Italy

Received  November 1999 Revised  April 2000 Published  August 2000

In this paper we study the existence of radial solutions to sublinear systems of elliptic equations.
We first give a multiplicity result on solutions with prescribed nodal properties; then, we show the existence of positive solutions. The proofs are based on topological degree arguments.
Citation: Anna Capietto, Walter Dambrosio. A topological degree approach to sublinear systems of second order differential equations. Discrete & Continuous Dynamical Systems - A, 2000, 6 (4) : 861-874. doi: 10.3934/dcds.2000.6.861
[1]

Antonio Greco, Vincenzino Mascia. Non-local sublinear problems: Existence, comparison, and radial symmetry. Discrete & Continuous Dynamical Systems - A, 2019, 39 (1) : 503-519. doi: 10.3934/dcds.2019021

[2]

D. Motreanu, Donal O'Regan, Nikolaos S. Papageorgiou. A unified treatment using critical point methods of the existence of multiple solutions for superlinear and sublinear Neumann problems. Communications on Pure & Applied Analysis, 2011, 10 (6) : 1791-1816. doi: 10.3934/cpaa.2011.10.1791

[3]

Cristian Bereanu, Petru Jebelean, Jean Mawhin. Radial solutions for Neumann problems with $\phi$-Laplacians and pendulum-like nonlinearities. Discrete & Continuous Dynamical Systems - A, 2010, 28 (2) : 637-648. doi: 10.3934/dcds.2010.28.637

[4]

Andrés Contreras, Manuel del Pino. Nodal bubble-tower solutions to radial elliptic problems near criticality. Discrete & Continuous Dynamical Systems - A, 2006, 16 (3) : 525-539. doi: 10.3934/dcds.2006.16.525

[5]

Filomena Pacella, Dora Salazar. Asymptotic behaviour of sign changing radial solutions of Lane Emden Problems in the annulus. Discrete & Continuous Dynamical Systems - S, 2014, 7 (4) : 793-805. doi: 10.3934/dcdss.2014.7.793

[6]

Christian Pötzsche. Nonautonomous continuation of bounded solutions. Communications on Pure & Applied Analysis, 2011, 10 (3) : 937-961. doi: 10.3934/cpaa.2011.10.937

[7]

Uriel Kaufmann, Humberto Ramos Quoirin, Kenichiro Umezu. A curve of positive solutions for an indefinite sublinear Dirichlet problem. Discrete & Continuous Dynamical Systems - A, 2020, 40 (2) : 817-845. doi: 10.3934/dcds.2020063

[8]

Y. Kabeya, Eiji Yanagida, Shoji Yotsutani. Canonical forms and structure theorems for radial solutions to semi-linear elliptic problems. Communications on Pure & Applied Analysis, 2002, 1 (1) : 85-102. doi: 10.3934/cpaa.2002.1.85

[9]

Trad Alotaibi, D. D. Hai, R. Shivaji. Existence and nonexistence of positive radial solutions for a class of $p$-Laplacian superlinear problems with nonlinear boundary conditions. Communications on Pure & Applied Analysis, 2020, 19 (9) : 4655-4666. doi: 10.3934/cpaa.2020131

[10]

Qiuping Lu, Zhi Ling. Least energy solutions for an elliptic problem involving sublinear term and peaking phenomenon. Communications on Pure & Applied Analysis, 2015, 14 (6) : 2411-2429. doi: 10.3934/cpaa.2015.14.2411

[11]

Marius Ghergu, Vicenţiu Rădulescu. Nonradial blow-up solutions of sublinear elliptic equations with gradient term. Communications on Pure & Applied Analysis, 2004, 3 (3) : 465-474. doi: 10.3934/cpaa.2004.3.465

[12]

Stephen Schecter, Bradley J. Plohr, Dan Marchesin. Computation of Riemann solutions using the Dafermos regularization and continuation. Discrete & Continuous Dynamical Systems - A, 2004, 10 (4) : 965-986. doi: 10.3934/dcds.2004.10.965

[13]

Feng Bao, Thomas Maier. Stochastic gradient descent algorithm for stochastic optimization in solving analytic continuation problems. Foundations of Data Science, 2020, 2 (1) : 1-17. doi: 10.3934/fods.2020001

[14]

Ryuji Kajikiya, Daisuke Naimen. Two sequences of solutions for indefinite superlinear-sublinear elliptic equations with nonlinear boundary conditions. Communications on Pure & Applied Analysis, 2014, 13 (4) : 1593-1612. doi: 10.3934/cpaa.2014.13.1593

[15]

Haiyan Wang. Existence and nonexistence of positive radial solutions for quasilinear systems. Conference Publications, 2009, 2009 (Special) : 810-817. doi: 10.3934/proc.2009.2009.810

[16]

Monica Lazzo, Paul G. Schmidt. Nodal properties of radial solutions for a class of polyharmonic equations. Conference Publications, 2007, 2007 (Special) : 634-643. doi: 10.3934/proc.2007.2007.634

[17]

Isabel Flores, Matteo Franca, Leonelo Iturriaga. Positive radial solutions involving nonlinearities with zeros. Discrete & Continuous Dynamical Systems - A, 2019, 39 (5) : 2555-2579. doi: 10.3934/dcds.2019107

[18]

Xia Huang, Liping Wang. Classification to the positive radial solutions with weighted biharmonic equation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (8) : 4821-4837. doi: 10.3934/dcds.2020203

[19]

Jérôme Coville, Juan Dávila. Existence of radial stationary solutions for a system in combustion theory. Discrete & Continuous Dynamical Systems - B, 2011, 16 (3) : 739-766. doi: 10.3934/dcdsb.2011.16.739

[20]

Chang-Shou Lin, Lei Zhang. Classification of radial solutions to Liouville systems with singularities. Discrete & Continuous Dynamical Systems - A, 2014, 34 (6) : 2617-2637. doi: 10.3934/dcds.2014.34.2617

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (32)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]