April  2001, 7(2): 247-258. doi: 10.3934/dcds.2001.7.247

Topological equivalence of some variational problems involving distances

1. 

Dipartimento di Matematica, Università di Pisa, via Buonarroti 2, 56127 Pisa, Italy

2. 

Dipartimento di Matematica, Via Buonarroti 2, 56127 Pisa, Italy

3. 

Dipartimento di Matematica - Politecnico, Piazza Leonardo Da Vinci 32, 20133, Milano, Italy

Revised  August 2000 Published  January 2001

To every distance $d$ on a given open set $\Omega\subseteq\mathbb R^n$, we may associate several kinds of variational problems. We show that, on the class of all geodesic distances $d$ on $\Omega$ which are bounded from above and from below by fixed multiples of the Euclidean one, the uniform convergence on compact sets turns out to be equivalent to the $\Gamma$-convergence of each of the corresponding variational problems under consideration.
Citation: Giuseppe Buttazzo, Luigi De Pascale, Ilaria Fragalà. Topological equivalence of some variational problems involving distances. Discrete & Continuous Dynamical Systems - A, 2001, 7 (2) : 247-258. doi: 10.3934/dcds.2001.7.247
[1]

Thierry Horsin, Mohamed Ali Jendoubi. On the convergence to equilibria of a sequence defined by an implicit scheme. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020465

[2]

Parikshit Upadhyaya, Elias Jarlebring, Emanuel H. Rubensson. A density matrix approach to the convergence of the self-consistent field iteration. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 99-115. doi: 10.3934/naco.2020018

[3]

Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $ L^2- $norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (55)
  • HTML views (0)
  • Cited by (3)

[Back to Top]