April  2001, 7(2): 247-258. doi: 10.3934/dcds.2001.7.247

Topological equivalence of some variational problems involving distances


Dipartimento di Matematica, Università di Pisa, via Buonarroti 2, 56127 Pisa, Italy


Dipartimento di Matematica, Via Buonarroti 2, 56127 Pisa, Italy


Dipartimento di Matematica - Politecnico, Piazza Leonardo Da Vinci 32, 20133, Milano, Italy

Revised  August 2000 Published  January 2001

To every distance $d$ on a given open set $\Omega\subseteq\mathbb R^n$, we may associate several kinds of variational problems. We show that, on the class of all geodesic distances $d$ on $\Omega$ which are bounded from above and from below by fixed multiples of the Euclidean one, the uniform convergence on compact sets turns out to be equivalent to the $\Gamma$-convergence of each of the corresponding variational problems under consideration.
Citation: Giuseppe Buttazzo, Luigi De Pascale, Ilaria Fragalà. Topological equivalence of some variational problems involving distances. Discrete & Continuous Dynamical Systems - A, 2001, 7 (2) : 247-258. doi: 10.3934/dcds.2001.7.247

Thierry Horsin, Mohamed Ali Jendoubi. On the convergence to equilibria of a sequence defined by an implicit scheme. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020465


Parikshit Upadhyaya, Elias Jarlebring, Emanuel H. Rubensson. A density matrix approach to the convergence of the self-consistent field iteration. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 99-115. doi: 10.3934/naco.2020018


Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $ L^2- $norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077

2019 Impact Factor: 1.338


  • PDF downloads (55)
  • HTML views (0)
  • Cited by (3)

[Back to Top]