April  2001, 7(2): 283-302. doi: 10.3934/dcds.2001.7.283

Exact/approximate controllability of thermoelastic plates with variable thermal coefficients

1. 

Department of Mathematics, Georgetown University, Washington, DC 20057, United States

2. 

Department of Mathematics, University of Virginia, P.O. Box 400137, Charlottesville, VA 22904, United States

Revised  August 2000 Published  January 2001

We study a controllability problem (exact in the mechanical variables {$w,w_t$} and, simultaneously, approximate in the thermal variable $\theta$) of thermoelastic plates by means of boundary controls, in the clamped/Dirichlet B.C. case, when the 'thermal expansion' term is variable in space.
Citation: M. Eller, Roberto Triggiani. Exact/approximate controllability of thermoelastic plates with variable thermal coefficients. Discrete and Continuous Dynamical Systems, 2001, 7 (2) : 283-302. doi: 10.3934/dcds.2001.7.283
[1]

Maria Grazia Naso. Controllability to trajectories for semilinear thermoelastic plates. Conference Publications, 2005, 2005 (Special) : 672-681. doi: 10.3934/proc.2005.2005.672

[2]

Moncef Aouadi, Taoufik Moulahi. The controllability of a thermoelastic plate problem revisited. Evolution Equations and Control Theory, 2018, 7 (1) : 1-31. doi: 10.3934/eect.2018001

[3]

Moncef Aouadi, Taoufik Moulahi. Approximate controllability of abstract nonsimple thermoelastic problem. Evolution Equations and Control Theory, 2015, 4 (4) : 373-389. doi: 10.3934/eect.2015.4.373

[4]

Ramón Quintanilla, Reinhard Racke. Stability for thermoelastic plates with two temperatures. Discrete and Continuous Dynamical Systems, 2017, 37 (12) : 6333-6352. doi: 10.3934/dcds.2017274

[5]

Moncef Aouadi, Kaouther Boulehmi. Partial exact controllability for inhomogeneous multidimensional thermoelastic diffusion problem. Evolution Equations and Control Theory, 2016, 5 (2) : 201-224. doi: 10.3934/eect.2016001

[6]

Filippo Dell'Oro, Vittorino Pata. Memory relaxation of type III thermoelastic extensible beams and Berger plates. Evolution Equations and Control Theory, 2012, 1 (2) : 251-270. doi: 10.3934/eect.2012.1.251

[7]

Irina F. Sivergina, Michael P. Polis. About global null controllability of a quasi-static thermoelastic contact system. Conference Publications, 2005, 2005 (Special) : 816-823. doi: 10.3934/proc.2005.2005.816

[8]

Orazio Arena. A problem of boundary controllability for a plate. Evolution Equations and Control Theory, 2013, 2 (4) : 557-562. doi: 10.3934/eect.2013.2.557

[9]

Nicolas Augier, Ugo Boscain, Mario Sigalotti. Semi-conical eigenvalue intersections and the ensemble controllability problem for quantum systems. Mathematical Control and Related Fields, 2020, 10 (4) : 877-911. doi: 10.3934/mcrf.2020023

[10]

Rajesh Dhayal, Muslim Malik, Syed Abbas, Anil Kumar, Rathinasamy Sakthivel. Approximation theorems for controllability problem governed by fractional differential equation. Evolution Equations and Control Theory, 2021, 10 (2) : 411-429. doi: 10.3934/eect.2020073

[11]

Hee-Dae Kwon, Jeehyun Lee, Sung-Dae Yang. Eigenseries solutions to optimal control problem and controllability problems on hyperbolic PDEs. Discrete and Continuous Dynamical Systems - B, 2010, 13 (2) : 305-325. doi: 10.3934/dcdsb.2010.13.305

[12]

Luciano Pandolfi. Riesz systems, spectral controllability and a source identification problem for heat equations with memory. Discrete and Continuous Dynamical Systems - S, 2011, 4 (3) : 745-759. doi: 10.3934/dcdss.2011.4.745

[13]

Poongodi Rathinasamy, Murugesu Rangasamy, Nirmalkumar Rajendran. Exact controllability results for a class of abstract nonlocal Cauchy problem with impulsive conditions. Evolution Equations and Control Theory, 2017, 6 (4) : 599-613. doi: 10.3934/eect.2017030

[14]

Pengyu Chen, Xuping Zhang. Approximate controllability of nonlocal problem for non-autonomous stochastic evolution equations. Evolution Equations and Control Theory, 2021, 10 (3) : 471-489. doi: 10.3934/eect.2020076

[15]

Angelo Morro. Nonlinear waves in thermoelastic dielectrics. Evolution Equations and Control Theory, 2019, 8 (1) : 149-162. doi: 10.3934/eect.2019009

[16]

Philippe Jaming, Vilmos Komornik. Moving and oblique observations of beams and plates. Evolution Equations and Control Theory, 2020, 9 (2) : 447-468. doi: 10.3934/eect.2020013

[17]

Moncef Aouadi, Taoufik Moulahi. Asymptotic analysis of a nonsimple thermoelastic rod. Discrete and Continuous Dynamical Systems - S, 2016, 9 (5) : 1475-1492. doi: 10.3934/dcdss.2016059

[18]

Vilmos Komornik, Paola Loreti. Observability of rectangular membranes and plates on small sets. Evolution Equations and Control Theory, 2014, 3 (2) : 287-304. doi: 10.3934/eect.2014.3.287

[19]

Jifeng Chu, Maurizio Garrione, Filippo Gazzola. Stability analysis in some strongly prestressed rectangular plates. Evolution Equations and Control Theory, 2020, 9 (1) : 275-299. doi: 10.3934/eect.2020006

[20]

Stefanie Thiem, Jörg Lässig. Modeling the thermal conductance of phononic crystal plates. Conference Publications, 2013, 2013 (special) : 737-746. doi: 10.3934/proc.2013.2013.737

2020 Impact Factor: 1.392

Metrics

  • PDF downloads (93)
  • HTML views (0)
  • Cited by (9)

Other articles
by authors

[Back to Top]