-
Previous Article
Attractors for semilinear strongly damped wave equations on $\mathbb R^3$
- DCDS Home
- This Issue
-
Next Article
Eigenfunction expansion method and the long-time asymptotics for the damped Boussinesq equation
Linking type solutions for elliptic equations with indefinite nonlinearities up to the critical growth
1. | Dip. di Matematica, Università di Roma "La Sapienza", P.le A.Moro 2 - 00185 - Roma, Italy |
2. | Dip. di Matematica, Università di Roma "Tor Vergata", Via della Ricerca Scientifica - 00133 - Roma, Italy, Italy |
[1] |
Yu Chen, Yanheng Ding, Suhong Li. Existence and concentration for Kirchhoff type equations around topologically critical points of the potential. Communications on Pure and Applied Analysis, 2017, 16 (5) : 1641-1671. doi: 10.3934/cpaa.2017079 |
[2] |
Mateus Balbino Guimarães, Rodrigo da Silva Rodrigues. Elliptic equations involving linear and superlinear terms and critical Caffarelli-Kohn-Nirenberg exponent with sign-changing weight functions. Communications on Pure and Applied Analysis, 2013, 12 (6) : 2697-2713. doi: 10.3934/cpaa.2013.12.2697 |
[3] |
Wenmin Gong, Guangcun Lu. On Dirac equation with a potential and critical Sobolev exponent. Communications on Pure and Applied Analysis, 2015, 14 (6) : 2231-2263. doi: 10.3934/cpaa.2015.14.2231 |
[4] |
Norimichi Hirano, A. M. Micheletti, A. Pistoia. Existence of sign changing solutions for some critical problems on $\mathbb R^N$. Communications on Pure and Applied Analysis, 2005, 4 (1) : 143-164. doi: 10.3934/cpaa.2005.4.143 |
[5] |
Salomón Alarcón, Jinggang Tan. Sign-changing solutions for some nonhomogeneous nonlocal critical elliptic problems. Discrete and Continuous Dynamical Systems, 2019, 39 (10) : 5825-5846. doi: 10.3934/dcds.2019256 |
[6] |
Yuxin Ge, Monica Musso, A. Pistoia, Daniel Pollack. A refined result on sign changing solutions for a critical elliptic problem. Communications on Pure and Applied Analysis, 2013, 12 (1) : 125-155. doi: 10.3934/cpaa.2013.12.125 |
[7] |
Yu Su, Zhaosheng Feng. Ground state solutions for the fractional problems with dipole-type potential and critical exponent. Communications on Pure and Applied Analysis, 2022, 21 (6) : 1953-1968. doi: 10.3934/cpaa.2021111 |
[8] |
Jincai Kang, Chunlei Tang. Ground state radial sign-changing solutions for a gauged nonlinear Schrödinger equation involving critical growth. Communications on Pure and Applied Analysis, 2020, 19 (11) : 5239-5252. doi: 10.3934/cpaa.2020235 |
[9] |
Yanfang Peng, Jing Yang. Sign-changing solutions to elliptic problems with two critical Sobolev-Hardy exponents. Communications on Pure and Applied Analysis, 2015, 14 (2) : 439-455. doi: 10.3934/cpaa.2015.14.439 |
[10] |
Yohei Sato. Sign-changing multi-peak solutions for nonlinear Schrödinger equations with critical frequency. Communications on Pure and Applied Analysis, 2008, 7 (4) : 883-903. doi: 10.3934/cpaa.2008.7.883 |
[11] |
Tsung-Fang Wu. On semilinear elliptic equations involving critical Sobolev exponents and sign-changing weight function. Communications on Pure and Applied Analysis, 2008, 7 (2) : 383-405. doi: 10.3934/cpaa.2008.7.383 |
[12] |
Xiaoping Chen, Chunlei Tang. Least energy sign-changing solutions for Schrödinger-Poisson system with critical growth. Communications on Pure and Applied Analysis, 2021, 20 (6) : 2291-2312. doi: 10.3934/cpaa.2021077 |
[13] |
Qi-Lin Xie, Xing-Ping Wu, Chun-Lei Tang. Existence and multiplicity of solutions for Kirchhoff type problem with critical exponent. Communications on Pure and Applied Analysis, 2013, 12 (6) : 2773-2786. doi: 10.3934/cpaa.2013.12.2773 |
[14] |
Peng Chen, Xiaochun Liu. Multiplicity of solutions to Kirchhoff type equations with critical Sobolev exponent. Communications on Pure and Applied Analysis, 2018, 17 (1) : 113-125. doi: 10.3934/cpaa.2018007 |
[15] |
Qilin Xie, Jianshe Yu. Bounded state solutions of Kirchhoff type problems with a critical exponent in high dimension. Communications on Pure and Applied Analysis, 2019, 18 (1) : 129-158. doi: 10.3934/cpaa.2019008 |
[16] |
Enrique R. Pujals, Federico Rodriguez Hertz. Critical points for surface diffeomorphisms. Journal of Modern Dynamics, 2007, 1 (4) : 615-648. doi: 10.3934/jmd.2007.1.615 |
[17] |
Keith Promislow, Hang Zhang. Critical points of functionalized Lagrangians. Discrete and Continuous Dynamical Systems, 2013, 33 (4) : 1231-1246. doi: 10.3934/dcds.2013.33.1231 |
[18] |
Fengjuan Meng, Chengkui Zhong. Multiple equilibrium points in global attractor for the weakly damped wave equation with critical exponent. Discrete and Continuous Dynamical Systems - B, 2014, 19 (1) : 217-230. doi: 10.3934/dcdsb.2014.19.217 |
[19] |
Jing Zhang, Shiwang Ma. Positive solutions of perturbed elliptic problems involving Hardy potential and critical Sobolev exponent. Discrete and Continuous Dynamical Systems - B, 2016, 21 (6) : 1999-2009. doi: 10.3934/dcdsb.2016033 |
[20] |
Fengshuang Gao, Yuxia Guo. Infinitely many solutions for quasilinear equations with critical exponent and Hardy potential in $ \mathbb{R}^N $. Discrete and Continuous Dynamical Systems, 2020, 40 (9) : 5591-5616. doi: 10.3934/dcds.2020239 |
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]