October  2001, 7(4): 809-820. doi: 10.3934/dcds.2001.7.809

Existence and stability of periodic solutions of semilinear neutral type systems

1. 

Department of Mathematics, Ben Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105, Israel

Received  January 2000 Revised  April 2001 Published  July 2001

Forced periodic oscillations of coupled systems of semilinear neutral type functional differential equations are investigated. Explicit conditions for existence, uniqueness and stability of periodic solutions are derived. These conditions are formulated in terms of the roots of characteristic polynomials.
In addition, estimates for periodic solutions and their derivatives are established.
Citation: M.I. Gil’. Existence and stability of periodic solutions of semilinear neutral type systems. Discrete & Continuous Dynamical Systems - A, 2001, 7 (4) : 809-820. doi: 10.3934/dcds.2001.7.809
[1]

Nguyen Minh Man, Nguyen Van Minh. On the existence of quasi periodic and almost periodic solutions of neutral functional differential equations. Communications on Pure & Applied Analysis, 2004, 3 (2) : 291-300. doi: 10.3934/cpaa.2004.3.291

[2]

Tomás Caraballo, Gábor Kiss. Attractivity for neutral functional differential equations. Discrete & Continuous Dynamical Systems - B, 2013, 18 (7) : 1793-1804. doi: 10.3934/dcdsb.2013.18.1793

[3]

Mustafa Hasanbulli, Yuri V. Rogovchenko. Classification of nonoscillatory solutions of nonlinear neutral differential equations. Conference Publications, 2009, 2009 (Special) : 340-348. doi: 10.3934/proc.2009.2009.340

[4]

Nguyen Thieu Huy, Ngo Quy Dang. Dichotomy and periodic solutions to partial functional differential equations. Discrete & Continuous Dynamical Systems - B, 2017, 22 (8) : 3127-3144. doi: 10.3934/dcdsb.2017167

[5]

Daria Bugajewska, Mirosława Zima. On the spectral radius of linearly bounded operators and existence results for functional-differential equations. Conference Publications, 2003, 2003 (Special) : 147-155. doi: 10.3934/proc.2003.2003.147

[6]

Yongqiang Suo, Chenggui Yuan. Large deviations for neutral stochastic functional differential equations. Communications on Pure & Applied Analysis, 2020, 19 (4) : 2369-2384. doi: 10.3934/cpaa.2020103

[7]

Hernán R. Henríquez, Claudio Cuevas, Alejandro Caicedo. Asymptotically periodic solutions of neutral partial differential equations with infinite delay. Communications on Pure & Applied Analysis, 2013, 12 (5) : 2031-2068. doi: 10.3934/cpaa.2013.12.2031

[8]

Miguel V. S. Frasson, Patricia H. Tacuri. Asymptotic behaviour of solutions to linear neutral delay differential equations with periodic coefficients. Communications on Pure & Applied Analysis, 2014, 13 (3) : 1105-1117. doi: 10.3934/cpaa.2014.13.1105

[9]

Qiang Li, Mei Wei. Existence and asymptotic stability of periodic solutions for neutral evolution equations with delay. Evolution Equations & Control Theory, 2019, 0 (0) : 0-0. doi: 10.3934/eect.2020032

[10]

Xiaoxiao Zheng, Hui Wu. Orbital stability of periodic traveling wave solutions to the coupled compound KdV and MKdV equations with two components. Mathematical Foundations of Computing, 2020, 3 (1) : 11-24. doi: 10.3934/mfc.2020002

[11]

Nicola Guglielmi, Christian Lubich. Numerical periodic orbits of neutral delay differential equations. Discrete & Continuous Dynamical Systems - A, 2005, 13 (4) : 1057-1067. doi: 10.3934/dcds.2005.13.1057

[12]

Adriana Buică, Jean–Pierre Françoise, Jaume Llibre. Periodic solutions of nonlinear periodic differential systems with a small parameter. Communications on Pure & Applied Analysis, 2007, 6 (1) : 103-111. doi: 10.3934/cpaa.2007.6.103

[13]

Hernán R. Henríquez, Claudio Cuevas, Juan C. Pozo, Herme Soto. Existence of solutions for a class of abstract neutral differential equations. Discrete & Continuous Dynamical Systems - A, 2017, 37 (5) : 2455-2482. doi: 10.3934/dcds.2017106

[14]

Vitalii G. Kurbatov, Valentina I. Kuznetsova. On stability of functional differential equations with rapidly oscillating coefficients. Communications on Pure & Applied Analysis, 2018, 17 (1) : 267-283. doi: 10.3934/cpaa.2018016

[15]

Yongkun Li, Pan Wang. Almost periodic solution for neutral functional dynamic equations with Stepanov-almost periodic terms on time scales. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 463-473. doi: 10.3934/dcdss.2017022

[16]

Tomás Caraballo, José Real, T. Taniguchi. The exponential stability of neutral stochastic delay partial differential equations. Discrete & Continuous Dynamical Systems - A, 2007, 18 (2&3) : 295-313. doi: 10.3934/dcds.2007.18.295

[17]

Jan Čermák, Jana Hrabalová. Delay-dependent stability criteria for neutral delay differential and difference equations. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4577-4588. doi: 10.3934/dcds.2014.34.4577

[18]

Stéphane Junca, Bruno Lombard. Stability of neutral delay differential equations modeling wave propagation in cracked media. Conference Publications, 2015, 2015 (special) : 678-685. doi: 10.3934/proc.2015.0678

[19]

Olesya V. Solonukha. On nonlinear and quasiliniear elliptic functional differential equations. Discrete & Continuous Dynamical Systems - S, 2016, 9 (3) : 869-893. doi: 10.3934/dcdss.2016033

[20]

Feliz Minhós. Periodic solutions for some fully nonlinear fourth order differential equations. Conference Publications, 2011, 2011 (Special) : 1068-1077. doi: 10.3934/proc.2011.2011.1068

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (20)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]