November  2002, 8(4): 1043-1057. doi: 10.3934/dcds.2002.8.1043

The generalized Liénard systems

1. 

Department of Mathematics, University of Turku, FIN-20014 Turku, Finland, Finland

Received  June 2001 Revised  May 2002 Published  July 2002

We consider the generalized Liénard system

$\frac{dx}{dt} = \frac{1}{a(x)}[h(y)-F(x)],$

$\frac{dy}{dt}= -a(x)g(x),\qquad\qquad\qquad\qquad\qquad$ (0.1)

where $a$ is a positive and continuous function on $R=(-\infty, \infty)$, and $F$, $g$ and $h$ are continuous functions on $R$. Under the assumption that the origin is a unique equilibrium, we obtain necessary and sufficient conditions for the origin of system (0.1) to be globally asymptotically stable by using a nonlinear integral inequality. Our results substantially extend and improve several known results in the literature.

Citation: Mats Gyllenberg, Yan Ping. The generalized Liénard systems. Discrete & Continuous Dynamical Systems, 2002, 8 (4) : 1043-1057. doi: 10.3934/dcds.2002.8.1043
[1]

Changrong Zhu, Bin Long. The periodic solutions bifurcated from a homoclinic solution for parabolic differential equations. Discrete & Continuous Dynamical Systems - B, 2016, 21 (10) : 3793-3808. doi: 10.3934/dcdsb.2016121

[2]

N. Kamran, K. Tenenblat. Periodic systems for the higher-dimensional Laplace transformation. Discrete & Continuous Dynamical Systems, 1998, 4 (2) : 359-378. doi: 10.3934/dcds.1998.4.359

[3]

Oksana Koltsova, Lev Lerman. Hamiltonian dynamics near nontransverse homoclinic orbit to saddle-focus equilibrium. Discrete & Continuous Dynamical Systems, 2009, 25 (3) : 883-913. doi: 10.3934/dcds.2009.25.883

[4]

Benoît Grébert, Tiphaine Jézéquel, Laurent Thomann. Dynamics of Klein-Gordon on a compact surface near a homoclinic orbit. Discrete & Continuous Dynamical Systems, 2014, 34 (9) : 3485-3510. doi: 10.3934/dcds.2014.34.3485

[5]

Shigui Ruan, Junjie Wei, Jianhong Wu. Bifurcation from a homoclinic orbit in partial functional differential equations. Discrete & Continuous Dynamical Systems, 2003, 9 (5) : 1293-1322. doi: 10.3934/dcds.2003.9.1293

[6]

W.-J. Beyn, Y.-K Zou. Discretizations of dynamical systems with a saddle-node homoclinic orbit. Discrete & Continuous Dynamical Systems, 1996, 2 (3) : 351-365. doi: 10.3934/dcds.1996.2.351

[7]

Peter Giesl. Converse theorem on a global contraction metric for a periodic orbit. Discrete & Continuous Dynamical Systems, 2019, 39 (9) : 5339-5363. doi: 10.3934/dcds.2019218

[8]

Xianjun Wang, Huaguang Gu, Bo Lu. Big homoclinic orbit bifurcation underlying post-inhibitory rebound spike and a novel threshold curve of a neuron. Electronic Research Archive, , () : -. doi: 10.3934/era.2021023

[9]

Wenxiang Sun, Yun Yang. Hyperbolic periodic points for chain hyperbolic homoclinic classes. Discrete & Continuous Dynamical Systems, 2016, 36 (7) : 3911-3925. doi: 10.3934/dcds.2016.36.3911

[10]

Samir Adly, Daniel Goeleven, Dumitru Motreanu. Periodic and homoclinic solutions for a class of unilateral problems. Discrete & Continuous Dynamical Systems, 1997, 3 (4) : 579-590. doi: 10.3934/dcds.1997.3.579

[11]

Anete S. Cavalcanti. An existence proof of a symmetric periodic orbit in the octahedral six-body problem. Discrete & Continuous Dynamical Systems, 2017, 37 (4) : 1903-1922. doi: 10.3934/dcds.2017080

[12]

Xueting Tian, Shirou Wang, Xiaodong Wang. Intermediate Lyapunov exponents for systems with periodic orbit gluing property. Discrete & Continuous Dynamical Systems, 2019, 39 (2) : 1019-1032. doi: 10.3934/dcds.2019042

[13]

Peter Giesl, James McMichen. Determination of the basin of attraction of a periodic orbit in two dimensions using meshless collocation. Journal of Computational Dynamics, 2016, 3 (2) : 191-210. doi: 10.3934/jcd.2016010

[14]

Tatiane C. Batista, Juliano S. Gonschorowski, Fábio A. Tal. Density of the set of endomorphisms with a maximizing measure supported on a periodic orbit. Discrete & Continuous Dynamical Systems, 2015, 35 (8) : 3315-3326. doi: 10.3934/dcds.2015.35.3315

[15]

Peter Giesl. On a matrix-valued PDE characterizing a contraction metric for a periodic orbit. Discrete & Continuous Dynamical Systems - B, 2021, 26 (9) : 4839-4865. doi: 10.3934/dcdsb.2020315

[16]

Flaviano Battelli, Ken Palmer. Transversal periodic-to-periodic homoclinic orbits in singularly perturbed systems. Discrete & Continuous Dynamical Systems - B, 2010, 14 (2) : 367-387. doi: 10.3934/dcdsb.2010.14.367

[17]

Peter Giesl. Necessary condition for the basin of attraction of a periodic orbit in non-smooth periodic systems. Discrete & Continuous Dynamical Systems, 2007, 18 (2&3) : 355-373. doi: 10.3934/dcds.2007.18.355

[18]

Songtao Sun, Qiuhua Zhang, Ryan Loxton, Bin Li. Numerical solution of a pursuit-evasion differential game involving two spacecraft in low earth orbit. Journal of Industrial & Management Optimization, 2015, 11 (4) : 1127-1147. doi: 10.3934/jimo.2015.11.1127

[19]

Christian Bonatti, Lorenzo J. Díaz, Todd Fisher. Super-exponential growth of the number of periodic orbits inside homoclinic classes. Discrete & Continuous Dynamical Systems, 2008, 20 (3) : 589-604. doi: 10.3934/dcds.2008.20.589

[20]

Juntao Sun, Jifeng Chu, Zhaosheng Feng. Homoclinic orbits for first order periodic Hamiltonian systems with spectrum point zero. Discrete & Continuous Dynamical Systems, 2013, 33 (8) : 3807-3824. doi: 10.3934/dcds.2013.33.3807

2020 Impact Factor: 1.392

Metrics

  • PDF downloads (62)
  • HTML views (0)
  • Cited by (5)

Other articles
by authors

[Back to Top]