January  2002, 8(1): 209-218. doi: 10.3934/dcds.2002.8.209

Stable subharmonic solutions of reaction-diffusion equations on an arbitrary domain

1. 

Institute of Applied Mathematics, Comenius University, Mlynská dolina, 842 48 Bratislava, Slovak Republic

2. 

Mathematical Institute Tohoku University, 6-3Aoba, Aramaki, Aoba-ku, Sendai-shi, 980-8578

Received  January 2001 Revised  July 2001 Published  October 2001

The paper is concerned with stable subharmonic solutions of timeperiodic spatially inhomogeneous reaction-diffusion equations. We show that such solutions exist on any spatial domain, provided the nonlinearity is chosen suitably. This contrasts with our previous results on spatially homogeneous equations that admit stable subharmonic solutions on some, but not on arbitrary domains.
Citation: Peter Poláčik, Eiji Yanagida. Stable subharmonic solutions of reaction-diffusion equations on an arbitrary domain. Discrete and Continuous Dynamical Systems, 2002, 8 (1) : 209-218. doi: 10.3934/dcds.2002.8.209
[1]

E. N. Dancer, Norimichi Hirano. Existence of stable and unstable periodic solutions for semilinear parabolic problems. Discrete and Continuous Dynamical Systems, 1997, 3 (2) : 207-216. doi: 10.3934/dcds.1997.3.207

[2]

Zhibo Cheng, Jingli Ren. Periodic and subharmonic solutions for duffing equation with a singularity. Discrete and Continuous Dynamical Systems, 2012, 32 (5) : 1557-1574. doi: 10.3934/dcds.2012.32.1557

[3]

Yong Li, Zhenxin Liu, Wenhe Wang. Almost periodic solutions and stable solutions for stochastic differential equations. Discrete and Continuous Dynamical Systems - B, 2019, 24 (11) : 5927-5944. doi: 10.3934/dcdsb.2019113

[4]

Vera Ignatenko. Homoclinic and stable periodic solutions for differential delay equations from physiology. Discrete and Continuous Dynamical Systems, 2018, 38 (7) : 3637-3661. doi: 10.3934/dcds.2018157

[5]

Yuxiang Zhang, Shiwang Ma. Some existence results on periodic and subharmonic solutions of ordinary $P$-Laplacian systems. Discrete and Continuous Dynamical Systems - B, 2009, 12 (1) : 251-260. doi: 10.3934/dcdsb.2009.12.251

[6]

Alberto Boscaggin, Fabio Zanolin. Subharmonic solutions for nonlinear second order equations in presence of lower and upper solutions. Discrete and Continuous Dynamical Systems, 2013, 33 (1) : 89-110. doi: 10.3934/dcds.2013.33.89

[7]

Xiying Sun, Qihuai Liu, Dingbian Qian, Na Zhao. Infinitely many subharmonic solutions for nonlinear equations with singular $ \phi $-Laplacian. Communications on Pure and Applied Analysis, 2020, 19 (1) : 279-292. doi: 10.3934/cpaa.20200015

[8]

Changrong Zhu, Bin Long. The periodic solutions bifurcated from a homoclinic solution for parabolic differential equations. Discrete and Continuous Dynamical Systems - B, 2016, 21 (10) : 3793-3808. doi: 10.3934/dcdsb.2016121

[9]

A. Aschwanden, A. Schulze-Halberg, D. Stoffer. Stable periodic solutions for delay equations with positive feedback - a computer-assisted proof. Discrete and Continuous Dynamical Systems, 2006, 14 (4) : 721-736. doi: 10.3934/dcds.2006.14.721

[10]

Szandra Beretka, Gabriella Vas. Stable periodic solutions for Nazarenko's equation. Communications on Pure and Applied Analysis, 2020, 19 (6) : 3257-3281. doi: 10.3934/cpaa.2020144

[11]

Xiao-Fei Zhang, Fei Guo. Multiplicity of subharmonic solutions and periodic solutions of a particular type of super-quadratic Hamiltonian systems. Communications on Pure and Applied Analysis, 2016, 15 (5) : 1625-1642. doi: 10.3934/cpaa.2016005

[12]

Chungen Liu, Xiaofei Zhang. Subharmonic solutions and minimal periodic solutions of first-order Hamiltonian systems with anisotropic growth. Discrete and Continuous Dynamical Systems, 2017, 37 (3) : 1559-1574. doi: 10.3934/dcds.2017064

[13]

Anouar Bahrouni, Marek Izydorek, Joanna Janczewska. Subharmonic solutions for a class of Lagrangian systems. Discrete and Continuous Dynamical Systems - S, 2019, 12 (7) : 1841-1850. doi: 10.3934/dcdss.2019121

[14]

Xia Huang. Stable weak solutions of weighted nonlinear elliptic equations. Communications on Pure and Applied Analysis, 2014, 13 (1) : 293-305. doi: 10.3934/cpaa.2014.13.293

[15]

Feng Wang, Jifeng Chu, Zaitao Liang. Prevalence of stable periodic solutions in the forced relativistic pendulum equation. Discrete and Continuous Dynamical Systems - B, 2018, 23 (10) : 4579-4594. doi: 10.3934/dcdsb.2018177

[16]

Genni Fragnelli, Paolo Nistri, Duccio Papini. Corrigendum: Nnon-trivial non-negative periodic solutions of a system of doubly degenerate parabolic equations with nonlocal terms. Discrete and Continuous Dynamical Systems, 2013, 33 (8) : 3831-3834. doi: 10.3934/dcds.2013.33.3831

[17]

Rui Huang, Yifu Wang, Yuanyuan Ke. Existence of non-trivial nonnegative periodic solutions for a class of degenerate parabolic equations with nonlocal terms. Discrete and Continuous Dynamical Systems - B, 2005, 5 (4) : 1005-1014. doi: 10.3934/dcdsb.2005.5.1005

[18]

Genni Fragnelli, Paolo Nistri, Duccio Papini. Non-trivial non-negative periodic solutions of a system of doubly degenerate parabolic equations with nonlocal terms. Discrete and Continuous Dynamical Systems, 2011, 31 (1) : 35-64. doi: 10.3934/dcds.2011.31.35

[19]

Kaifang Liu, Lunji Song, Shan Zhao. A new over-penalized weak galerkin method. Part Ⅰ: Second-order elliptic problems. Discrete and Continuous Dynamical Systems - B, 2021, 26 (5) : 2411-2428. doi: 10.3934/dcdsb.2020184

[20]

Lunji Song, Wenya Qi, Kaifang Liu, Qingxian Gu. A new over-penalized weak galerkin finite element method. Part Ⅱ: Elliptic interface problems. Discrete and Continuous Dynamical Systems - B, 2021, 26 (5) : 2581-2598. doi: 10.3934/dcdsb.2020196

2021 Impact Factor: 1.588

Metrics

  • PDF downloads (62)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]