• Previous Article
    Deformation from symmetry and multiplicity of solutions in non-homogeneous problems
  • DCDS Home
  • This Issue
  • Next Article
    On the reduction of the modified Benjamin-Ono equation to the cubic derivative nonlinear Schrödinger equation
January  2002, 8(1): 257-265. doi: 10.3934/dcds.2002.8.257

A uniform $C^1$ connecting lemma

1. 

School of Mathematic Sciences, Peking University, Beijing, 100871, China

Received  July 2001 Published  October 2001

We prove there are uniform bounds for quantities that guarantee C1 connecting of orbits. Here the uniformity is with respect to all systems in a $C^1$ neighborhood of the given system, and with respect to certain set of accumulation points.
Citation: Lan Wen. A uniform $C^1$ connecting lemma. Discrete and Continuous Dynamical Systems, 2002, 8 (1) : 257-265. doi: 10.3934/dcds.2002.8.257
[1]

Keonhee Lee, Kazumine Moriyasu, Kazuhiro Sakai. $C^1$-stable shadowing diffeomorphisms. Discrete and Continuous Dynamical Systems, 2008, 22 (3) : 683-697. doi: 10.3934/dcds.2008.22.683

[2]

Hermann Köenig, Vitali Milman. Derivative and entropy: the only derivations from $C^1(RR)$ to $C(RR)$. Electronic Research Announcements, 2011, 18: 54-60. doi: 10.3934/era.2011.18.54

[3]

Nikolaz Gourmelon. Generation of homoclinic tangencies by $C^1$-perturbations. Discrete and Continuous Dynamical Systems, 2010, 26 (1) : 1-42. doi: 10.3934/dcds.2010.26.1

[4]

Flavio Abdenur, Lorenzo J. Díaz. Pseudo-orbit shadowing in the $C^1$ topology. Discrete and Continuous Dynamical Systems, 2007, 17 (2) : 223-245. doi: 10.3934/dcds.2007.17.223

[5]

Christian Bonatti, Sylvain Crovisier and Amie Wilkinson. The centralizer of a $C^1$-generic diffeomorphism is trivial. Electronic Research Announcements, 2008, 15: 33-43. doi: 10.3934/era.2008.15.33

[6]

Martín Sambarino, José L. Vieitez. On $C^1$-persistently expansive homoclinic classes. Discrete and Continuous Dynamical Systems, 2006, 14 (3) : 465-481. doi: 10.3934/dcds.2006.14.465

[7]

Yunhua Zhou. The local $C^1$-density of stable ergodicity. Discrete and Continuous Dynamical Systems, 2013, 33 (7) : 2621-2629. doi: 10.3934/dcds.2013.33.2621

[8]

Keonhee Lee, Manseob Lee. Hyperbolicity of $C^1$-stably expansive homoclinic classes. Discrete and Continuous Dynamical Systems, 2010, 27 (3) : 1133-1145. doi: 10.3934/dcds.2010.27.1133

[9]

Mikko Salo. Stability for solutions of wave equations with $C^{1,1}$ coefficients. Inverse Problems and Imaging, 2007, 1 (3) : 537-556. doi: 10.3934/ipi.2007.1.537

[10]

Shaobo Gan, Kazuhiro Sakai, Lan Wen. $C^1$ -stably weakly shadowing homoclinic classes admit dominated splittings. Discrete and Continuous Dynamical Systems, 2010, 27 (1) : 205-216. doi: 10.3934/dcds.2010.27.205

[11]

Yun Yang. Horseshoes for $\mathcal{C}^{1+\alpha}$ mappings with hyperbolic measures. Discrete and Continuous Dynamical Systems, 2015, 35 (10) : 5133-5152. doi: 10.3934/dcds.2015.35.5133

[12]

S. Yu. Pilyugin, Kazuhiro Sakai, O. A. Tarakanov. Transversality properties and $C^1$-open sets of diffeomorphisms with weak shadowing. Discrete and Continuous Dynamical Systems, 2006, 16 (4) : 871-882. doi: 10.3934/dcds.2006.16.871

[13]

Christian Bonatti, Sylvain Crovisier, Amie Wilkinson. $C^1$-generic conservative diffeomorphisms have trivial centralizer. Journal of Modern Dynamics, 2008, 2 (2) : 359-373. doi: 10.3934/jmd.2008.2.359

[14]

Rodrigo P. Pacheco, Rafael O. Ruggiero. On C1, β density of metrics without invariant graphs. Discrete and Continuous Dynamical Systems, 2018, 38 (1) : 247-261. doi: 10.3934/dcds.2018012

[15]

Juan Wang, Jing Wang, Yongluo Cao, Yun Zhao. Dimensions of $ C^1- $average conformal hyperbolic sets. Discrete and Continuous Dynamical Systems, 2020, 40 (2) : 883-905. doi: 10.3934/dcds.2020065

[16]

Raquel Ribeiro. Hyperbolicity and types of shadowing for $C^1$ generic vector fields. Discrete and Continuous Dynamical Systems, 2014, 34 (7) : 2963-2982. doi: 10.3934/dcds.2014.34.2963

[17]

Christian Bonatti, Sylvain Crovisier, Katsutoshi Shinohara. The $C^{1+\alpha }$ hypothesis in Pesin Theory revisited. Journal of Modern Dynamics, 2013, 7 (4) : 605-618. doi: 10.3934/jmd.2013.7.605

[18]

Katsutoshi Shinohara. On the index problem of $C^1$-generic wild homoclinic classes in dimension three. Discrete and Continuous Dynamical Systems, 2011, 31 (3) : 913-940. doi: 10.3934/dcds.2011.31.913

[19]

Andrey Gogolev, Misha Guysinsky. $C^1$-differentiable conjugacy of Anosov diffeomorphisms on three dimensional torus. Discrete and Continuous Dynamical Systems, 2008, 22 (1&2) : 183-200. doi: 10.3934/dcds.2008.22.183

[20]

Matteo Cozzi. On the variation of the fractional mean curvature under the effect of $C^{1, \alpha}$ perturbations. Discrete and Continuous Dynamical Systems, 2015, 35 (12) : 5769-5786. doi: 10.3934/dcds.2015.35.5769

2020 Impact Factor: 1.392

Metrics

  • PDF downloads (108)
  • HTML views (0)
  • Cited by (8)

Other articles
by authors

[Back to Top]