 Previous Article
 DCDS Home
 This Issue

Next Article
Nonlinear parabolic differential equations and inequalities
Controllability of partial differential equations and its semidiscrete approximations
1.  Departamento de Matemática Aplicada, Universidad Complutense, 28040 Madrid, Spain 
[1] 
Vladislav Balashov, Alexander Zlotnik. An energy dissipative semidiscrete finitedifference method on staggered meshes for the 3D compressible isothermal Navier–Stokes–Cahn–Hilliard equations. Journal of Computational Dynamics, 2020, 7 (2) : 291312. doi: 10.3934/jcd.2020012 
[2] 
Jonathan Touboul. Erratum on: Controllability of the heat and wave equations and their finite difference approximations by the shape of the domain. Mathematical Control and Related Fields, 2019, 9 (1) : 221222. doi: 10.3934/mcrf.2019006 
[3] 
Jonathan Touboul. Controllability of the heat and wave equations and their finite difference approximations by the shape of the domain. Mathematical Control and Related Fields, 2012, 2 (4) : 429455. doi: 10.3934/mcrf.2012.2.429 
[4] 
Yinnian He, R. M.M. Mattheij. Reformed postprocessing Galerkin method for the NavierStokes equations. Discrete and Continuous Dynamical Systems  B, 2007, 8 (2) : 369387. doi: 10.3934/dcdsb.2007.8.369 
[5] 
Kaitai Li, Yanren Hou. Fourier nonlinear Galerkin method for NavierStokes equations. Discrete and Continuous Dynamical Systems, 1996, 2 (4) : 497524. doi: 10.3934/dcds.1996.2.497 
[6] 
Viorel Barbu, Ionuţ Munteanu. Internal stabilization of NavierStokes equation with exact controllability on spaces with finite codimension. Evolution Equations and Control Theory, 2012, 1 (1) : 116. doi: 10.3934/eect.2012.1.1 
[7] 
SunHo Choi. Weighted energy method and long wave short wave decomposition on the linearized compressible NavierStokes equation. Networks and Heterogeneous Media, 2013, 8 (2) : 465479. doi: 10.3934/nhm.2013.8.465 
[8] 
Út V. Lê. ContractionGalerkin method for a semilinear wave equation. Communications on Pure and Applied Analysis, 2010, 9 (1) : 141160. doi: 10.3934/cpaa.2010.9.141 
[9] 
C. Foias, M. S Jolly, I. Kukavica, E. S. Titi. The Lorenz equation as a metaphor for the NavierStokes equations. Discrete and Continuous Dynamical Systems, 2001, 7 (2) : 403429. doi: 10.3934/dcds.2001.7.403 
[10] 
Zimo Zhu, Gang Chen, Xiaoping Xie. Semidiscrete and fully discrete HDG methods for Burgers' equation. Communications on Pure and Applied Analysis, , () : . doi: 10.3934/cpaa.2021132 
[11] 
Abdeladim El Akri, Lahcen Maniar. Uniform indirect boundary controllability of semidiscrete $ 1 $$ d $ coupled wave equations. Mathematical Control and Related Fields, 2020, 10 (4) : 669698. doi: 10.3934/mcrf.2020015 
[12] 
Mahboub Baccouch. Superconvergence of the semidiscrete local discontinuous Galerkin method for nonlinear KdVtype problems. Discrete and Continuous Dynamical Systems  B, 2019, 24 (1) : 1954. doi: 10.3934/dcdsb.2018104 
[13] 
Evrad M. D. Ngom, Abdou Sène, Daniel Y. Le Roux. Boundary stabilization of the NavierStokes equations with feedback controller via a Galerkin method. Evolution Equations and Control Theory, 2014, 3 (1) : 147166. doi: 10.3934/eect.2014.3.147 
[14] 
I. Moise, Roger Temam. Renormalization group method: Application to NavierStokes equation. Discrete and Continuous Dynamical Systems, 2000, 6 (1) : 191210. doi: 10.3934/dcds.2000.6.191 
[15] 
Xuhui Peng, Rangrang Zhang. Approximations of stochastic 3D tamed NavierStokes equations. Communications on Pure and Applied Analysis, 2020, 19 (12) : 53375365. doi: 10.3934/cpaa.2020241 
[16] 
Yueqiang Shang, Qihui Zhang. A subgrid stabilizing postprocessed mixed finite element method for the timedependent NavierStokes equations. Discrete and Continuous Dynamical Systems  B, 2021, 26 (6) : 31193142. doi: 10.3934/dcdsb.2020222 
[17] 
Kuijie Li, Tohru Ozawa, Baoxiang Wang. Dynamical behavior for the solutions of the NavierStokes equation. Communications on Pure and Applied Analysis, 2018, 17 (4) : 15111560. doi: 10.3934/cpaa.2018073 
[18] 
Arnaud Debussche, Jacques Printems. Convergence of a semidiscrete scheme for the stochastic Kortewegde Vries equation. Discrete and Continuous Dynamical Systems  B, 2006, 6 (4) : 761781. doi: 10.3934/dcdsb.2006.6.761 
[19] 
Lunji Song, Wenya Qi, Kaifang Liu, Qingxian Gu. A new overpenalized weak galerkin finite element method. Part Ⅱ: Elliptic interface problems. Discrete and Continuous Dynamical Systems  B, 2021, 26 (5) : 25812598. doi: 10.3934/dcdsb.2020196 
[20] 
Linglong Du, Haitao Wang. Pointwise wave behavior of the NavierStokes equations in half space. Discrete and Continuous Dynamical Systems, 2018, 38 (3) : 13491363. doi: 10.3934/dcds.2018055 
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]