\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Regularity and uniqueness results in grand Sobolev spaces for parabolic equations with measure data

Abstract / Introduction Related Papers Cited by
  • In this paper we prove some regularity and uniqueness results for a class of nonlinear parabolic problems whose prototype is

    $\partial_t u - \Delta_N u=\mu$ in $\mathcal D'(Q) $

    $u=0$ on $]0,T[\times\partial \Omega$

    $u(0)=u_0$ in $ \Omega,$

    where $Q$ is the cylinder $Q=(0,T)\times\Omega$, $T>0$, $\Omega\subset \mathbb R^n$, $N\ge 2$, is an open bounded set having $C^2$ boundary, $\mu\in L^1(0,T;M(\Omega))$ and $u_0$ belongs to $M(\Omega)$, the space of the Radon measures in $\Omega$, or to $L^1(\Omega)$. The results are obtained in the framework of the so-called grand Sobolev spaces, and represent an extension of earlier results on standard Sobolev spaces.

    Mathematics Subject Classification: 35K60, 35R05, 35K15, 46E30.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(117) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return