\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Higher order Melnikov function for a quartic hamiltonian with cuspidal loop

Abstract / Introduction Related Papers Cited by
  • Consider the polynomial perturbations of Hamiltonian vector field

    $X_\epsilon=(H_y+\epsilon f(x,y,\epsilon))\frac{\partial}{\partial x}+ (-H_x+\epsilon g(x,y,\epsilon))\frac{\partial}{\partial y},$

    where the Hamiltonian $H(x,y)=\frac{1}{2}y^2+U(x)$ has one center and one cuspidal loop, $deg U(x)=4$. In present paper we find an upper bound for the number of zeros of the $k$th order Melnikov function $M_k(h)$ for arbitrary polynomials $f(x,y,\epsilon)$ and $g(x,y,\epsilon)$.

    Mathematics Subject Classification: 34C07, 34C08, 37G15.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(103) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return