$X_\epsilon=(H_y+\epsilon f(x,y,\epsilon))\frac{\partial}{\partial x}+ (-H_x+\epsilon g(x,y,\epsilon))\frac{\partial}{\partial y},$
where the Hamiltonian $H(x,y)=\frac{1}{2}y^2+U(x)$ has one center and one cuspidal loop, $deg U(x)=4$. In present paper we find an upper bound for the number of zeros of the $k$th order Melnikov function $M_k(h)$ for arbitrary polynomials $f(x,y,\epsilon)$ and $g(x,y,\epsilon)$.
Citation: |