\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

On positive solutions for classes of p-Laplacian semipositone systems

Abstract / Introduction Related Papers Cited by
  • We study positive solutions for the system

    $-\Delta_p u = \lambda f(v)$ in $\quad \Omega $

    $-\Delta_p v = \lambda g(u)$ in $ \quad \Omega $

    $u = 0 = v$ on $ \quad \partial \Omega$

    where $ \lambda > 0 $ is a parameter, $ \Delta_p $ denotes the p-Laplacian operator defined by $ \Delta_p(z)$:=div$(|\nabla z|^{p-2}\nabla z) $ for $ p> 1 $ and $ \Omega $ is a bounded domain with smooth boundary. Here $ f,g \in C[0,\infty) $ belong to a class of functions satisfying $ \lim_{z \to \infty}\frac{f(z)}{z^{p-1}}=0, \lim_{z \to \infty}\frac{g(z)}{z^{p-1}}=0 $. In particular, we discuss the existence of radial solutions for large $ \lambda $ when $ \Omega $ is an annulus. For a general bounded region $ \Omega, $ we also discuss a non-existence result when $ f(0) < 0 $ and $ g(0) < 0. $

    Mathematics Subject Classification: Primary: 34B18, 35J55.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(128) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return