\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Non-wandering sets of the powers of maps of a star

Abstract / Introduction Related Papers Cited by
  • Let $T$ be a star and $\Omega(f)$ be the set of non-wandering points of a continuous map $f:T\rightarrow T$. For two distinct prime numbers $p$ and $q$, we prove: (1) $\Omega(f^p)\cup \Omega(f^q)=\Omega(f)$ for each $f \in C(T,T)$ if and only if $pq > End(T)$, (2) $\Omega(f^p)\cap \Omega(f^q)=\Omega(f^{p q})$ for each $f\in C(T,T)$ if and only if $p+q \ge End(T)$, where $End(T)$ is the number of the ends of $T$. Using (1)-(2) and the results in [3], we obtain a complete description of non-wandering sets of the powers of maps of 3-star and 4-star.
    Mathematics Subject Classification: 54H20.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(55) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return