November  2003, 9(6): 1423-1446. doi: 10.3934/dcds.2003.9.1423

Uniform Bernoulli measure in dynamics of permutative cellular automata with algebraic local rules

1. 

Equipe d'Analyse et de Mathématiques Appliquées, Université de Marne la Vallée, 5 Boulevard Descartes, Champs sur Marne, 77454 Marne la Vallée Cedex, France

2. 

Departamento de Ingeniería Matemática and Centro de Modelamiento Matemático, UMR 2071 UCHILE-CNRS, Universidad de Chile, Casilla 170/3 correo 3, Santiago, Chile

3. 

Departamento de Ingeniería Matemática and Centro de Modelamiento Matemático, UMR 2071 UCHILE–CNRS, Universidad de Chile, Casilla 170–3, correo 3, Santiago, Chile

Received  May 2002 Revised  May 2003 Published  September 2003

In this paper we study the role of uniform Bernoulli measure in the dynamics of cellular automata of algebraic origin.
First we show a representation result for classes of permutative cellular automata: those with associative type local rule are the product of a group cellular automaton with a translation map, and if they satisfy a scaling condition, they are the product of an affine cellular automaton (the alphabet is an Abelian group) with a translation map.
For cellular automata of this type with an Abelian factor group, and starting from a translation invariant probability measure with complete connections and summable decay, it is shown that the Cesàro mean of the iteration of this measure by the cellular automaton converges to the product of the uniform Bernoulli measure with a shift invariant measure.
Finally, the following characterization is shown for affine cellular automaton whose alphabet is a group of prime order: the uniform Bernoulli measure is the unique invariant probability measure which has positive entropy for the automaton, and is either ergodic for the shift or ergodic for the $\mathbb Z^2$-action induced by the shift and the automaton, together with a condition on the rational eigenvalues of the automaton.
Citation: Bernard Host, Alejandro Maass, Servet Martínez. Uniform Bernoulli measure in dynamics of permutative cellular automata with algebraic local rules. Discrete & Continuous Dynamical Systems - A, 2003, 9 (6) : 1423-1446. doi: 10.3934/dcds.2003.9.1423
[1]

Marcelo Sobottka. Right-permutative cellular automata on topological Markov chains. Discrete & Continuous Dynamical Systems - A, 2008, 20 (4) : 1095-1109. doi: 10.3934/dcds.2008.20.1095

[2]

T.K. Subrahmonian Moothathu. Homogeneity of surjective cellular automata. Discrete & Continuous Dynamical Systems - A, 2005, 13 (1) : 195-202. doi: 10.3934/dcds.2005.13.195

[3]

Achilles Beros, Monique Chyba, Oleksandr Markovichenko. Controlled cellular automata. Networks & Heterogeneous Media, 2019, 14 (1) : 1-22. doi: 10.3934/nhm.2019001

[4]

Marcus Pivato. Invariant measures for bipermutative cellular automata. Discrete & Continuous Dynamical Systems - A, 2005, 12 (4) : 723-736. doi: 10.3934/dcds.2005.12.723

[5]

Achilles Beros, Monique Chyba, Kari Noe. Co-evolving cellular automata for morphogenesis. Discrete & Continuous Dynamical Systems - B, 2019, 24 (5) : 2053-2071. doi: 10.3934/dcdsb.2019084

[6]

Petr Kůrka. On the measure attractor of a cellular automaton. Conference Publications, 2005, 2005 (Special) : 524-535. doi: 10.3934/proc.2005.2005.524

[7]

Xinxin Tan, Shujuan Li, Sisi Liu, Zhiwei Zhao, Lisa Huang, Jiatai Gang. Dynamic simulation of a SEIQR-V epidemic model based on cellular automata. Numerical Algebra, Control & Optimization, 2015, 5 (4) : 327-337. doi: 10.3934/naco.2015.5.327

[8]

Brian Marcus and Selim Tuncel. Powers of positive polynomials and codings of Markov chains onto Bernoulli shifts. Electronic Research Announcements, 1999, 5: 91-101.

[9]

Jong Yeoul Park, Sun Hye Park. On uniform decay for the coupled Euler-Bernoulli viscoelastic system with boundary damping. Discrete & Continuous Dynamical Systems - A, 2005, 12 (3) : 425-436. doi: 10.3934/dcds.2005.12.425

[10]

Akinori Awazu. Input-dependent wave propagations in asymmetric cellular automata: Possible behaviors of feed-forward loop in biological reaction network. Mathematical Biosciences & Engineering, 2008, 5 (3) : 419-427. doi: 10.3934/mbe.2008.5.419

[11]

Boris Kalinin, Anatole Katok. Measure rigidity beyond uniform hyperbolicity: invariant measures for cartan actions on tori. Journal of Modern Dynamics, 2007, 1 (1) : 123-146. doi: 10.3934/jmd.2007.1.123

[12]

Marcelo Moreira Cavalcanti. Existence and uniform decay for the Euler-Bernoulli viscoelastic equation with nonlocal boundary dissipation. Discrete & Continuous Dynamical Systems - A, 2002, 8 (3) : 675-695. doi: 10.3934/dcds.2002.8.675

[13]

Boris Kalinin, Anatole Katok, Federico Rodriguez Hertz. Errata to "Measure rigidity beyond uniform hyperbolicity: Invariant measures for Cartan actions on tori" and "Uniqueness of large invariant measures for $\Zk$ actions with Cartan homotopy data". Journal of Modern Dynamics, 2010, 4 (1) : 207-209. doi: 10.3934/jmd.2010.4.207

[14]

C. Alonso-González, M. I. Camacho, F. Cano. Topological classification of multiple saddle connections. Discrete & Continuous Dynamical Systems - A, 2006, 15 (2) : 395-414. doi: 10.3934/dcds.2006.15.395

[15]

Flaviano Battelli, Ken Palmer. Heteroclinic connections in singularly perturbed systems. Discrete & Continuous Dynamical Systems - B, 2008, 9 (3&4, May) : 431-461. doi: 10.3934/dcdsb.2008.9.431

[16]

Benjamin Dozier. Equidistribution of saddle connections on translation surfaces. Journal of Modern Dynamics, 2019, 14: 87-120. doi: 10.3934/jmd.2019004

[17]

Sergey V. Bolotin. Shadowing chains of collision orbits. Discrete & Continuous Dynamical Systems - A, 2006, 14 (2) : 235-260. doi: 10.3934/dcds.2006.14.235

[18]

Luisa Berchialla, Luigi Galgani, Antonio Giorgilli. Localization of energy in FPU chains. Discrete & Continuous Dynamical Systems - A, 2004, 11 (4) : 855-866. doi: 10.3934/dcds.2004.11.855

[19]

Wenxiong Chen, Congming Li. Harmonic maps on complete manifolds. Discrete & Continuous Dynamical Systems - A, 1999, 5 (4) : 799-804. doi: 10.3934/dcds.1999.5.799

[20]

Paula Kemp. Fixed points and complete lattices. Conference Publications, 2007, 2007 (Special) : 568-572. doi: 10.3934/proc.2007.2007.568

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (21)
  • HTML views (0)
  • Cited by (8)

Other articles
by authors

[Back to Top]