Advanced Search
Article Contents
Article Contents

Global bifurcation of homoclinic solutions of Hamiltonian systems

Abstract Related Papers Cited by
  • The main results give hypotheses ensuring that a non-autonomous first order Hamiltonian system has a global branch of homoclinic solutions bifurcating from an eigenvalue of odd multiplicity of the linearization. The system is required to be asymptotically periodic (as time goes to plus and minus infinity) and these limit problems should have no homoclinic solutions. Furthermore, the asymptotic limits of the linearization should have no characteristic multipliers on the unit circle. The proof uses the topological degree for proper Fredholm maps of index zero.
    Mathematics Subject Classification: 37J45, 43C37, 34C23.


    \begin{equation} \\ \end{equation}
  • 加载中

Article Metrics

HTML views() PDF downloads(63) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint