-
Previous Article
Buried points and lakes of Wada Continua
- DCDS Home
- This Issue
-
Next Article
Oscillations in a second-order discontinuous system with delay
Asymptotic measures and distributions of Birkhoff averages with respect to Lebesgue measure
1. | Department of Mathematics, Ohio University, Athens, OH 45701, United States |
[1] |
Simone Calogero, Juan Calvo, Óscar Sánchez, Juan Soler. Dispersive behavior in galactic dynamics. Discrete and Continuous Dynamical Systems - B, 2010, 14 (1) : 1-16. doi: 10.3934/dcdsb.2010.14.1 |
[2] |
Jean-Paul Pier. The historical changes of borders separating pure mathematics from applied mathematics. Discrete and Continuous Dynamical Systems - S, 2013, 6 (3) : 793-801. doi: 10.3934/dcdss.2013.6.793 |
[3] |
Joe Yuichiro Wakano. Spatiotemporal dynamics of cooperation and spite behavior by conformist transmission. Communications on Pure and Applied Analysis, 2012, 11 (1) : 375-386. doi: 10.3934/cpaa.2012.11.375 |
[4] |
Cecilia Cavaterra, Maurizio Grasselli. Asymptotic behavior of population dynamics models with nonlocal distributed delays. Discrete and Continuous Dynamical Systems, 2008, 22 (4) : 861-883. doi: 10.3934/dcds.2008.22.861 |
[5] |
Filomena Garcia, Joana Resende. Conformity-based behavior and the dynamics of price competition: A new rationale for fashion shifts. Journal of Dynamics and Games, 2016, 3 (2) : 153-167. doi: 10.3934/jdg.2016008 |
[6] |
Andrea Giorgini. On the Swift-Hohenberg equation with slow and fast dynamics: well-posedness and long-time behavior. Communications on Pure and Applied Analysis, 2016, 15 (1) : 219-241. doi: 10.3934/cpaa.2016.15.219 |
[7] |
Michele Colturato. Well-posedness and longtime behavior for a singular phase field system with perturbed phase dynamics. Evolution Equations and Control Theory, 2018, 7 (2) : 217-245. doi: 10.3934/eect.2018011 |
[8] |
Dingshi Li, Kening Lu, Bixiang Wang, Xiaohu Wang. Limiting behavior of dynamics for stochastic reaction-diffusion equations with additive noise on thin domains. Discrete and Continuous Dynamical Systems, 2018, 38 (1) : 187-208. doi: 10.3934/dcds.2018009 |
[9] |
Anastasiia Panchuk, Frank Westerhoff. Speculative behavior and chaotic asset price dynamics: On the emergence of a bandcount accretion bifurcation structure. Discrete and Continuous Dynamical Systems - B, 2021, 26 (11) : 5941-5964. doi: 10.3934/dcdsb.2021117 |
[10] |
Mouhamadou Samsidy Goudiaby, Ababacar Diagne, Leon Matar Tine. Longtime behavior of a second order finite element scheme simulating the kinematic effects in liquid crystal dynamics. Communications on Pure and Applied Analysis, 2021, 20 (10) : 3499-3514. doi: 10.3934/cpaa.2021116 |
[11] |
Prabir Panja, Soovoojeet Jana, Shyamal kumar Mondal. Dynamics of a stage structure prey-predator model with ratio-dependent functional response and anti-predator behavior of adult prey. Numerical Algebra, Control and Optimization, 2021, 11 (3) : 391-405. doi: 10.3934/naco.2020033 |
[12] |
Roman Czapla, Vladimir V. Mityushev. A criterion of collective behavior of bacteria. Mathematical Biosciences & Engineering, 2017, 14 (1) : 277-287. doi: 10.3934/mbe.2017018 |
[13] |
Luis Barreira, Claudia Valls. Topological conjugacies and behavior at infinity. Communications on Pure and Applied Analysis, 2014, 13 (2) : 687-701. doi: 10.3934/cpaa.2014.13.687 |
[14] |
Zhipeng Qiu, Jun Yu, Yun Zou. The asymptotic behavior of a chemostat model. Discrete and Continuous Dynamical Systems - B, 2004, 4 (3) : 721-727. doi: 10.3934/dcdsb.2004.4.721 |
[15] |
John Kieffer and En-hui Yang. Ergodic behavior of graph entropy. Electronic Research Announcements, 1997, 3: 11-16. |
[16] |
Chunpeng Wang. Boundary behavior and asymptotic behavior of solutions to a class of parabolic equations with boundary degeneracy. Discrete and Continuous Dynamical Systems, 2016, 36 (2) : 1041-1060. doi: 10.3934/dcds.2016.36.1041 |
[17] |
Brigitte Vallée. Euclidean dynamics. Discrete and Continuous Dynamical Systems, 2006, 15 (1) : 281-352. doi: 10.3934/dcds.2006.15.281 |
[18] |
Shin Kiriki, Ming-Chia Li, Teruhiko Soma. Geometric Lorenz flows with historic behavior. Discrete and Continuous Dynamical Systems, 2016, 36 (12) : 7021-7028. doi: 10.3934/dcds.2016105 |
[19] |
M. Grasselli, Vittorino Pata, Giovanni Prouse. Longtime behavior of a viscoelastic Timoshenko beam. Discrete and Continuous Dynamical Systems, 2004, 10 (1&2) : 337-348. doi: 10.3934/dcds.2004.10.337 |
[20] |
Messoud A. Efendiev, Sergey Zelik, Hermann J. Eberl. Existence and longtime behavior of a biofilm model. Communications on Pure and Applied Analysis, 2009, 8 (2) : 509-531. doi: 10.3934/cpaa.2009.8.509 |
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]