March  2003, 9(2): 413-426. doi: 10.3934/dcds.2003.9.413

Kam theory, Lindstedt series and the stability of the upside-down pendulum

1. 

Department of Mathematics and Statistics, University of Surrey, GU2 7XH, United Kingdom, United Kingdom

2. 

Dipartimento di Matematica, Università di Roma Tre, Roma, I-00146, Italy

Received  October 2001 Revised  March 2002 Published  December 2002

We consider the planar pendulum with support point oscillating in the vertical direction; the upside-down position of the pendulum corresponds to an equilibrium point for the projection of the motion on the pendulum phase space. By using the Lindstedt series method recently developed in literature starting from the pioneering work by Eliasson, we show that such an equilibrium point is stable for a full measure subset of the stability region of the linearized system inside the two-dimensional space of parameters, by proving the persistence of invariant KAM tori for the two-dimensional Hamiltonian system describing the model.
Citation: Michele V. Bartuccelli, G. Gentile, Kyriakos V. Georgiou. Kam theory, Lindstedt series and the stability of the upside-down pendulum. Discrete & Continuous Dynamical Systems - A, 2003, 9 (2) : 413-426. doi: 10.3934/dcds.2003.9.413
[1]

G. Gentile, V. Mastropietro. Convergence of Lindstedt series for the non linear wave equation. Communications on Pure & Applied Analysis, 2004, 3 (3) : 509-514. doi: 10.3934/cpaa.2004.3.509

[2]

John Boyd. Strongly nonlinear perturbation theory for solitary waves and bions. Evolution Equations & Control Theory, 2019, 8 (1) : 1-29. doi: 10.3934/eect.2019001

[3]

Roman Srzednicki. On periodic solutions in the Whitney's inverted pendulum problem. Discrete & Continuous Dynamical Systems - S, 2019, 12 (7) : 2127-2141. doi: 10.3934/dcdss.2019137

[4]

Andrea Davini, Maxime Zavidovique. Weak KAM theory for nonregular commuting Hamiltonians. Discrete & Continuous Dynamical Systems - B, 2013, 18 (1) : 57-94. doi: 10.3934/dcdsb.2013.18.57

[5]

Feng Wang, Jifeng Chu, Zaitao Liang. Prevalence of stable periodic solutions in the forced relativistic pendulum equation. Discrete & Continuous Dynamical Systems - B, 2018, 23 (10) : 4579-4594. doi: 10.3934/dcdsb.2018177

[6]

Stefano Marò. Relativistic pendulum and invariant curves. Discrete & Continuous Dynamical Systems - A, 2015, 35 (3) : 1139-1162. doi: 10.3934/dcds.2015.35.1139

[7]

Diogo Gomes, Levon Nurbekyan. An infinite-dimensional weak KAM theory via random variables. Discrete & Continuous Dynamical Systems - A, 2016, 36 (11) : 6167-6185. doi: 10.3934/dcds.2016069

[8]

Xifeng Su, Lin Wang, Jun Yan. Weak KAM theory for HAMILTON-JACOBI equations depending on unknown functions. Discrete & Continuous Dynamical Systems - A, 2016, 36 (11) : 6487-6522. doi: 10.3934/dcds.2016080

[9]

Xianwei Chen, Zhujun Jing, Xiangling Fu. Chaos control in a pendulum system with excitations. Discrete & Continuous Dynamical Systems - B, 2015, 20 (2) : 373-383. doi: 10.3934/dcdsb.2015.20.373

[10]

Mari Paz Calvo, Jesus M. Sanz-Serna. Carrying an inverted pendulum on a bumpy road. Discrete & Continuous Dynamical Systems - B, 2010, 14 (2) : 429-438. doi: 10.3934/dcdsb.2010.14.429

[11]

J. Ángel Cid, Pedro J. Torres. On the existence and stability of periodic solutions for pendulum-like equations with friction and $\phi$-Laplacian. Discrete & Continuous Dynamical Systems - A, 2013, 33 (1) : 141-152. doi: 10.3934/dcds.2013.33.141

[12]

Fabio Cipriani, Gabriele Grillo. On the $l^p$ -agmon's theory. Conference Publications, 1998, 1998 (Special) : 167-176. doi: 10.3934/proc.1998.1998.167

[13]

Jaume Llibre, Claudio A. Buzzi, Paulo R. da Silva. 3-dimensional Hopf bifurcation via averaging theory. Discrete & Continuous Dynamical Systems - A, 2007, 17 (3) : 529-540. doi: 10.3934/dcds.2007.17.529

[14]

Jaume Llibre, Amar Makhlouf, Sabrina Badi. $3$ - dimensional Hopf bifurcation via averaging theory of second order. Discrete & Continuous Dynamical Systems - A, 2009, 25 (4) : 1287-1295. doi: 10.3934/dcds.2009.25.1287

[15]

Antonio Pumariño, Claudia Valls. On the double pendulum: An example of double resonant situations. Discrete & Continuous Dynamical Systems - A, 2004, 11 (2&3) : 413-448. doi: 10.3934/dcds.2004.11.413

[16]

Richard Cushman, Jędrzej Śniatycki. Bohr-Sommerfeld-Heisenberg quantization of the mathematical pendulum. Journal of Geometric Mechanics, 2018, 10 (4) : 419-443. doi: 10.3934/jgm.2018016

[17]

Ivan Polekhin. On motions without falling of an inverted pendulum with dry friction. Journal of Geometric Mechanics, 2018, 10 (4) : 411-417. doi: 10.3934/jgm.2018015

[18]

Fabio Camilli, Annalisa Cesaroni. A note on singular perturbation problems via Aubry-Mather theory. Discrete & Continuous Dynamical Systems - A, 2007, 17 (4) : 807-819. doi: 10.3934/dcds.2007.17.807

[19]

Maxime Zavidovique. Existence of $C^{1,1}$ critical subsolutions in discrete weak KAM theory. Journal of Modern Dynamics, 2010, 4 (4) : 693-714. doi: 10.3934/jmd.2010.4.693

[20]

Luigi Chierchia, Gabriella Pinzari. Properly-degenerate KAM theory (following V. I. Arnold). Discrete & Continuous Dynamical Systems - S, 2010, 3 (4) : 545-578. doi: 10.3934/dcdss.2010.3.545

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (9)
  • HTML views (0)
  • Cited by (0)

[Back to Top]