-
Previous Article
Oscillatory blow-up in nonlinear second order ODE's: The critical case
- DCDS Home
- This Issue
-
Next Article
A twisted tensor product on symbolic dynamical systems and the Ashley's problem
Evolution Galerkin schemes applied to two-dimensional Riemann problems for the wave equation system
1. | School of Mathematical Sciences, Capital Normal University, 100037, Beijing, China |
2. | Arbeitsbereich Mathematik, Technische Universität Hamburg-Harburg, Hamburg, Germany |
3. | Institut für Analysis und Numerik, Otto-von-Guericke-Universität Magdeburg, Magdeburg, Germany |
[1] |
Julian Koellermeier, Giovanni Samaey. Projective integration schemes for hyperbolic moment equations. Kinetic and Related Models, 2021, 14 (2) : 353-387. doi: 10.3934/krm.2021008 |
[2] |
Nikolaos Halidias. Construction of positivity preserving numerical schemes for some multidimensional stochastic differential equations. Discrete and Continuous Dynamical Systems - B, 2015, 20 (1) : 153-160. doi: 10.3934/dcdsb.2015.20.153 |
[3] |
Jingwei Hu, Shi Jin. On kinetic flux vector splitting schemes for quantum Euler equations. Kinetic and Related Models, 2011, 4 (2) : 517-530. doi: 10.3934/krm.2011.4.517 |
[4] |
Meixiang Huang, Zhi-Qiang Shao. Riemann problem for the relativistic generalized Chaplygin Euler equations. Communications on Pure and Applied Analysis, 2016, 15 (1) : 127-138. doi: 10.3934/cpaa.2016.15.127 |
[5] |
Shuxing Chen, Gui-Qiang Chen, Zejun Wang, Dehua Wang. A multidimensional piston problem for the Euler equations for compressible flow. Discrete and Continuous Dynamical Systems, 2005, 13 (2) : 361-383. doi: 10.3934/dcds.2005.13.361 |
[6] |
Cheng Wang, Jian-Guo Liu. Positivity property of second-order flux-splitting schemes for the compressible Euler equations. Discrete and Continuous Dynamical Systems - B, 2003, 3 (2) : 201-228. doi: 10.3934/dcdsb.2003.3.201 |
[7] |
Qi Hong, Jialing Wang, Yuezheng Gong. Second-order linear structure-preserving modified finite volume schemes for the regularized long wave equation. Discrete and Continuous Dynamical Systems - B, 2019, 24 (12) : 6445-6464. doi: 10.3934/dcdsb.2019146 |
[8] |
Paolo Baiti, Helge Kristian Jenssen. Blowup in $\mathbf{L^{\infty}}$ for a class of genuinely nonlinear hyperbolic systems of conservation laws. Discrete and Continuous Dynamical Systems, 2001, 7 (4) : 837-853. doi: 10.3934/dcds.2001.7.837 |
[9] |
Jie Shen, Nan Zheng. Efficient and accurate sav schemes for the generalized Zakharov systems. Discrete and Continuous Dynamical Systems - B, 2021, 26 (1) : 645-666. doi: 10.3934/dcdsb.2020262 |
[10] |
Weishi Liu. Multiple viscous wave fan profiles for Riemann solutions of hyperbolic systems of conservation laws. Discrete and Continuous Dynamical Systems, 2004, 10 (4) : 871-884. doi: 10.3934/dcds.2004.10.871 |
[11] |
Amy Allwright, Abdon Atangana. Augmented upwind numerical schemes for a fractional advection-dispersion equation in fractured groundwater systems. Discrete and Continuous Dynamical Systems - S, 2020, 13 (3) : 443-466. doi: 10.3934/dcdss.2020025 |
[12] |
Tung Chang, Gui-Qiang Chen, Shuli Yang. On the 2-D Riemann problem for the compressible Euler equations I. Interaction of shocks and rarefaction waves. Discrete and Continuous Dynamical Systems, 1995, 1 (4) : 555-584. doi: 10.3934/dcds.1995.1.555 |
[13] |
Peng Zhang, Jiequan Li, Tong Zhang. On two-dimensional Riemann problem for pressure-gradient equations of the Euler system. Discrete and Continuous Dynamical Systems, 1998, 4 (4) : 609-634. doi: 10.3934/dcds.1998.4.609 |
[14] |
Tung Chang, Gui-Qiang Chen, Shuli Yang. On the 2-D Riemann problem for the compressible Euler equations II. Interaction of contact discontinuities. Discrete and Continuous Dynamical Systems, 2000, 6 (2) : 419-430. doi: 10.3934/dcds.2000.6.419 |
[15] |
Yaozhong Hu, Yanghui Liu, David Nualart. Taylor schemes for rough differential equations and fractional diffusions. Discrete and Continuous Dynamical Systems - B, 2016, 21 (9) : 3115-3162. doi: 10.3934/dcdsb.2016090 |
[16] |
Cheng Wang, Xiaoming Wang, Steven M. Wise. Unconditionally stable schemes for equations of thin film epitaxy. Discrete and Continuous Dynamical Systems, 2010, 28 (1) : 405-423. doi: 10.3934/dcds.2010.28.405 |
[17] |
Fabio Camilli, Giulia Cavagnari, Raul De Maio, Benedetto Piccoli. Superposition principle and schemes for measure differential equations. Kinetic and Related Models, 2021, 14 (1) : 89-113. doi: 10.3934/krm.2020050 |
[18] |
Tatsien Li, Wancheng Sheng. The general multi-dimensional Riemann problem for hyperbolic systems with real constant coefficients. Discrete and Continuous Dynamical Systems, 2002, 8 (3) : 737-744. doi: 10.3934/dcds.2002.8.737 |
[19] |
Constantine M. Dafermos. A variational approach to the Riemann problem for hyperbolic conservation laws. Discrete and Continuous Dynamical Systems, 2009, 23 (1&2) : 185-195. doi: 10.3934/dcds.2009.23.185 |
[20] |
Cunming Liu, Jianli Liu. Stability of traveling wave solutions to Cauchy problem of diagnolizable quasilinear hyperbolic systems. Discrete and Continuous Dynamical Systems, 2014, 34 (11) : 4735-4749. doi: 10.3934/dcds.2014.34.4735 |
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]