
Previous Article
Oscillatory blowup in nonlinear second order ODE's: The critical case
 DCDS Home
 This Issue

Next Article
A twisted tensor product on symbolic dynamical systems and the Ashley's problem
Evolution Galerkin schemes applied to twodimensional Riemann problems for the wave equation system
1.  School of Mathematical Sciences, Capital Normal University, 100037, Beijing, China 
2.  Arbeitsbereich Mathematik, Technische Universität HamburgHarburg, Hamburg, Germany 
3.  Institut für Analysis und Numerik, OttovonGuerickeUniversität Magdeburg, Magdeburg, Germany 
[1] 
Julian Koellermeier, Giovanni Samaey. Projective integration schemes for hyperbolic moment equations. Kinetic and Related Models, 2021, 14 (2) : 353387. doi: 10.3934/krm.2021008 
[2] 
Nikolaos Halidias. Construction of positivity preserving numerical schemes for some multidimensional stochastic differential equations. Discrete and Continuous Dynamical Systems  B, 2015, 20 (1) : 153160. doi: 10.3934/dcdsb.2015.20.153 
[3] 
Jingwei Hu, Shi Jin. On kinetic flux vector splitting schemes for quantum Euler equations. Kinetic and Related Models, 2011, 4 (2) : 517530. doi: 10.3934/krm.2011.4.517 
[4] 
Meixiang Huang, ZhiQiang Shao. Riemann problem for the relativistic generalized Chaplygin Euler equations. Communications on Pure and Applied Analysis, 2016, 15 (1) : 127138. doi: 10.3934/cpaa.2016.15.127 
[5] 
Shuxing Chen, GuiQiang Chen, Zejun Wang, Dehua Wang. A multidimensional piston problem for the Euler equations for compressible flow. Discrete and Continuous Dynamical Systems, 2005, 13 (2) : 361383. doi: 10.3934/dcds.2005.13.361 
[6] 
Cheng Wang, JianGuo Liu. Positivity property of secondorder fluxsplitting schemes for the compressible Euler equations. Discrete and Continuous Dynamical Systems  B, 2003, 3 (2) : 201228. doi: 10.3934/dcdsb.2003.3.201 
[7] 
Qi Hong, Jialing Wang, Yuezheng Gong. Secondorder linear structurepreserving modified finite volume schemes for the regularized long wave equation. Discrete and Continuous Dynamical Systems  B, 2019, 24 (12) : 64456464. doi: 10.3934/dcdsb.2019146 
[8] 
Paolo Baiti, Helge Kristian Jenssen. Blowup in $\mathbf{L^{\infty}}$ for a class of genuinely nonlinear hyperbolic systems of conservation laws. Discrete and Continuous Dynamical Systems, 2001, 7 (4) : 837853. doi: 10.3934/dcds.2001.7.837 
[9] 
Jie Shen, Nan Zheng. Efficient and accurate sav schemes for the generalized Zakharov systems. Discrete and Continuous Dynamical Systems  B, 2021, 26 (1) : 645666. doi: 10.3934/dcdsb.2020262 
[10] 
Weishi Liu. Multiple viscous wave fan profiles for Riemann solutions of hyperbolic systems of conservation laws. Discrete and Continuous Dynamical Systems, 2004, 10 (4) : 871884. doi: 10.3934/dcds.2004.10.871 
[11] 
Amy Allwright, Abdon Atangana. Augmented upwind numerical schemes for a fractional advectiondispersion equation in fractured groundwater systems. Discrete and Continuous Dynamical Systems  S, 2020, 13 (3) : 443466. doi: 10.3934/dcdss.2020025 
[12] 
Tung Chang, GuiQiang Chen, Shuli Yang. On the 2D Riemann problem for the compressible Euler equations I. Interaction of shocks and rarefaction waves. Discrete and Continuous Dynamical Systems, 1995, 1 (4) : 555584. doi: 10.3934/dcds.1995.1.555 
[13] 
Peng Zhang, Jiequan Li, Tong Zhang. On twodimensional Riemann problem for pressuregradient equations of the Euler system. Discrete and Continuous Dynamical Systems, 1998, 4 (4) : 609634. doi: 10.3934/dcds.1998.4.609 
[14] 
Tung Chang, GuiQiang Chen, Shuli Yang. On the 2D Riemann problem for the compressible Euler equations II. Interaction of contact discontinuities. Discrete and Continuous Dynamical Systems, 2000, 6 (2) : 419430. doi: 10.3934/dcds.2000.6.419 
[15] 
Yaozhong Hu, Yanghui Liu, David Nualart. Taylor schemes for rough differential equations and fractional diffusions. Discrete and Continuous Dynamical Systems  B, 2016, 21 (9) : 31153162. doi: 10.3934/dcdsb.2016090 
[16] 
Cheng Wang, Xiaoming Wang, Steven M. Wise. Unconditionally stable schemes for equations of thin film epitaxy. Discrete and Continuous Dynamical Systems, 2010, 28 (1) : 405423. doi: 10.3934/dcds.2010.28.405 
[17] 
Fabio Camilli, Giulia Cavagnari, Raul De Maio, Benedetto Piccoli. Superposition principle and schemes for measure differential equations. Kinetic and Related Models, 2021, 14 (1) : 89113. doi: 10.3934/krm.2020050 
[18] 
Tatsien Li, Wancheng Sheng. The general multidimensional Riemann problem for hyperbolic systems with real constant coefficients. Discrete and Continuous Dynamical Systems, 2002, 8 (3) : 737744. doi: 10.3934/dcds.2002.8.737 
[19] 
Constantine M. Dafermos. A variational approach to the Riemann problem for hyperbolic conservation laws. Discrete and Continuous Dynamical Systems, 2009, 23 (1&2) : 185195. doi: 10.3934/dcds.2009.23.185 
[20] 
Cunming Liu, Jianli Liu. Stability of traveling wave solutions to Cauchy problem of diagnolizable quasilinear hyperbolic systems. Discrete and Continuous Dynamical Systems, 2014, 34 (11) : 47354749. doi: 10.3934/dcds.2014.34.4735 
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]