May  2003, 9(3): 617-632. doi: 10.3934/dcds.2003.9.617

Rotation sets for unimodal maps of the interval


Department of Mathematics, Indiana University Purdue University - Indianapolis, 402 N. Blackford Street, Indianapolis, IN 46202, United States

Received  October 2001 Revised  November 2002 Published  February 2003

We relate the rotation interval $\rho(f)$ of a unimodal map $f$ of the interval with its kneading invariant $K(f)$. In particular, we show that for any $\mu \in (0,\frac{1}{2})$, there are kneading invariants $\nu_\mu$ and $\nu_{\mu, h o m}$ such that $\rho(f)=[\mu, \frac{1}{2}]$ if and only if $\nu_\mu \preceq K(f) \preceq \nu_{\mu, h o m}$.
Citation: Christopher Cleveland. Rotation sets for unimodal maps of the interval. Discrete & Continuous Dynamical Systems - A, 2003, 9 (3) : 617-632. doi: 10.3934/dcds.2003.9.617

Héctor Barge. Čech cohomology, homoclinic trajectories and robustness of non-saddle sets. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020381


Awais Younus, Zoubia Dastgeer, Nudrat Ishaq, Abdul Ghaffar, Kottakkaran Sooppy Nisar, Devendra Kumar. On the observability of conformable linear time-invariant control systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020444

2019 Impact Factor: 1.338


  • PDF downloads (33)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]